Efficient approximation algorithms for the routing open shop problem

We consider the routing open shop problem being a generalization of two classical discrete optimization problems: the open shop scheduling problem and the metric traveling salesman problem. The jobs are located at nodes of some transportation network, and the machines travel on the network to execut...

Full description

Saved in:
Bibliographic Details
Published in:Computers & operations research Vol. 40; no. 3; pp. 841 - 847
Main Authors: Chernykh, Ilya, Kononov, Alexander, Sevastyanov, Sergey
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.03.2013
Elsevier
Pergamon Press Inc
Subjects:
ISSN:0305-0548, 1873-765X, 0305-0548
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the routing open shop problem being a generalization of two classical discrete optimization problems: the open shop scheduling problem and the metric traveling salesman problem. The jobs are located at nodes of some transportation network, and the machines travel on the network to execute the jobs in the open shop environment. The machines are initially located at the same node (depot) and must return to the depot after completing all the jobs. It is required to find a non-preemptive schedule with the minimum makespan. The problem is NP-hard even on the two-node network with two machines. We present new polynomial-time approximation algorithms with worst-case performance guarantees.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2012.01.006