Bilinear optimality constraints for the cone of positive polynomials
For a proper cone and its dual cone the complementary slackness condition defines an n -dimensional manifold in the space . When is a symmetric cone, points in must satisfy at least n linearly independent bilinear identities. This fact proves to be useful when optimizing over such cones, therefore i...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 129; číslo 1; s. 5 - 31 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer-Verlag
01.09.2011
Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For a proper cone
and its dual cone
the complementary slackness condition
defines an
n
-dimensional manifold
in the space
. When
is a symmetric cone, points in
must satisfy at least
n
linearly independent bilinear identities. This fact proves to be useful when optimizing over such cones, therefore it is natural to look for similar bilinear relations for non-symmetric cones. In this paper we define the
bilinearity rank
of a cone, which is the number of linearly independent bilinear identities valid for points in
. We examine several well-known cones, in particular the cone of positive polynomials
and its dual, and show that there are exactly four linearly independent bilinear identities which hold for all
, regardless of the dimension of the cones. For nonnegative polynomials over an interval or half-line there are only two linearly independent bilinear identities. These results are extended to trigonometric and exponential polynomials. We prove similar results for Müntz polynomials. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-011-0458-y |