Adaptive Feature Medical Segmentation Network: an adaptable deep learning paradigm for high-performance 3D brain lesion segmentation in medical imaging

In neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its complex morphology, especially when using traditional methods. Conventional methods are either computationally demanding with a marginal impact/enhancemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroscience Jg. 18; S. 1363930
Hauptverfasser: Zaman, Asim, Hassan, Haseeb, Zeng, Xueqiang, Khan, Rashid, Lu, Jiaxi, Yang, Huihui, Miao, Xiaoqiang, Cao, Anbo, Yang, Yingjian, Huang, Bingding, Guo, Yingwei, Kang, Yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media S.A 2024
Schlagworte:
ISSN:1662-453X, 1662-4548, 1662-453X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its complex morphology, especially when using traditional methods. Conventional methods are either computationally demanding with a marginal impact/enhancement or sacrifice fine details for computational efficiency. Therefore, balancing performance and precision in compute-intensive medical imaging remains a hot research topic. We introduce a novel encoder-decoder network architecture named the Adaptive Feature Medical Segmentation Network (AFMS-Net) with two encoder variants: the Single Adaptive Encoder Block (SAEB) and the Dual Adaptive Encoder Block (DAEB). A squeeze-and-excite mechanism is employed in SAEB to identify significant data while disregarding peripheral details. This approach is best suited for scenarios requiring quick and efficient segmentation, with an emphasis on identifying key lesion areas. In contrast, the DAEB utilizes an advanced channel spatial attention strategy for fine-grained delineation and multiple-class classifications. Additionally, both architectures incorporate a Segmentation Path (SegPath) module between the encoder and decoder, refining segmentation, enhancing feature extraction, and improving model performance and stability. AFMS-Net demonstrates exceptional performance across several notable datasets, including BRATs 2021, ATLAS 2021, and ISLES 2022. Its design aims to construct a lightweight architecture capable of handling complex segmentation challenges with high precision. The proposed AFMS-Net addresses the critical balance issue between performance and computational efficiency in the segmentation of brain lesions. By introducing two tailored encoder variants, the network adapts to varying requirements of speed and feature. This approach not only advances the state-of-the-art in lesion segmentation but also provides a scalable framework for future research in medical image processing.
AbstractList In neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its complex morphology, especially when using traditional methods. Conventional methods are either computationally demanding with a marginal impact/enhancement or sacrifice fine details for computational efficiency. Therefore, balancing performance and precision in compute-intensive medical imaging remains a hot research topic.IntroductionIn neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its complex morphology, especially when using traditional methods. Conventional methods are either computationally demanding with a marginal impact/enhancement or sacrifice fine details for computational efficiency. Therefore, balancing performance and precision in compute-intensive medical imaging remains a hot research topic.We introduce a novel encoder-decoder network architecture named the Adaptive Feature Medical Segmentation Network (AFMS-Net) with two encoder variants: the Single Adaptive Encoder Block (SAEB) and the Dual Adaptive Encoder Block (DAEB). A squeeze-and-excite mechanism is employed in SAEB to identify significant data while disregarding peripheral details. This approach is best suited for scenarios requiring quick and efficient segmentation, with an emphasis on identifying key lesion areas. In contrast, the DAEB utilizes an advanced channel spatial attention strategy for fine-grained delineation and multiple-class classifications. Additionally, both architectures incorporate a Segmentation Path (SegPath) module between the encoder and decoder, refining segmentation, enhancing feature extraction, and improving model performance and stability.MethodsWe introduce a novel encoder-decoder network architecture named the Adaptive Feature Medical Segmentation Network (AFMS-Net) with two encoder variants: the Single Adaptive Encoder Block (SAEB) and the Dual Adaptive Encoder Block (DAEB). A squeeze-and-excite mechanism is employed in SAEB to identify significant data while disregarding peripheral details. This approach is best suited for scenarios requiring quick and efficient segmentation, with an emphasis on identifying key lesion areas. In contrast, the DAEB utilizes an advanced channel spatial attention strategy for fine-grained delineation and multiple-class classifications. Additionally, both architectures incorporate a Segmentation Path (SegPath) module between the encoder and decoder, refining segmentation, enhancing feature extraction, and improving model performance and stability.AFMS-Net demonstrates exceptional performance across several notable datasets, including BRATs 2021, ATLAS 2021, and ISLES 2022. Its design aims to construct a lightweight architecture capable of handling complex segmentation challenges with high precision.ResultsAFMS-Net demonstrates exceptional performance across several notable datasets, including BRATs 2021, ATLAS 2021, and ISLES 2022. Its design aims to construct a lightweight architecture capable of handling complex segmentation challenges with high precision.The proposed AFMS-Net addresses the critical balance issue between performance and computational efficiency in the segmentation of brain lesions. By introducing two tailored encoder variants, the network adapts to varying requirements of speed and feature. This approach not only advances the state-of-the-art in lesion segmentation but also provides a scalable framework for future research in medical image processing.DiscussionThe proposed AFMS-Net addresses the critical balance issue between performance and computational efficiency in the segmentation of brain lesions. By introducing two tailored encoder variants, the network adapts to varying requirements of speed and feature. This approach not only advances the state-of-the-art in lesion segmentation but also provides a scalable framework for future research in medical image processing.
In neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its complex morphology, especially when using traditional methods. Conventional methods are either computationally demanding with a marginal impact/enhancement or sacrifice fine details for computational efficiency. Therefore, balancing performance and precision in compute-intensive medical imaging remains a hot research topic. We introduce a novel encoder-decoder network architecture named the Adaptive Feature Medical Segmentation Network (AFMS-Net) with two encoder variants: the Single Adaptive Encoder Block (SAEB) and the Dual Adaptive Encoder Block (DAEB). A squeeze-and-excite mechanism is employed in SAEB to identify significant data while disregarding peripheral details. This approach is best suited for scenarios requiring quick and efficient segmentation, with an emphasis on identifying key lesion areas. In contrast, the DAEB utilizes an advanced channel spatial attention strategy for fine-grained delineation and multiple-class classifications. Additionally, both architectures incorporate a Segmentation Path (SegPath) module between the encoder and decoder, refining segmentation, enhancing feature extraction, and improving model performance and stability. AFMS-Net demonstrates exceptional performance across several notable datasets, including BRATs 2021, ATLAS 2021, and ISLES 2022. Its design aims to construct a lightweight architecture capable of handling complex segmentation challenges with high precision. The proposed AFMS-Net addresses the critical balance issue between performance and computational efficiency in the segmentation of brain lesions. By introducing two tailored encoder variants, the network adapts to varying requirements of speed and feature. This approach not only advances the state-of-the-art in lesion segmentation but also provides a scalable framework for future research in medical image processing.
IntroductionIn neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its complex morphology, especially when using traditional methods. Conventional methods are either computationally demanding with a marginal impact/enhancement or sacrifice fine details for computational efficiency. Therefore, balancing performance and precision in compute-intensive medical imaging remains a hot research topic.MethodsWe introduce a novel encoder-decoder network architecture named the Adaptive Feature Medical Segmentation Network (AFMS-Net) with two encoder variants: the Single Adaptive Encoder Block (SAEB) and the Dual Adaptive Encoder Block (DAEB). A squeeze-and-excite mechanism is employed in SAEB to identify significant data while disregarding peripheral details. This approach is best suited for scenarios requiring quick and efficient segmentation, with an emphasis on identifying key lesion areas. In contrast, the DAEB utilizes an advanced channel spatial attention strategy for fine-grained delineation and multiple-class classifications. Additionally, both architectures incorporate a Segmentation Path (SegPath) module between the encoder and decoder, refining segmentation, enhancing feature extraction, and improving model performance and stability.ResultsAFMS-Net demonstrates exceptional performance across several notable datasets, including BRATs 2021, ATLAS 2021, and ISLES 2022. Its design aims to construct a lightweight architecture capable of handling complex segmentation challenges with high precision.DiscussionThe proposed AFMS-Net addresses the critical balance issue between performance and computational efficiency in the segmentation of brain lesions. By introducing two tailored encoder variants, the network adapts to varying requirements of speed and feature. This approach not only advances the state-of-the-art in lesion segmentation but also provides a scalable framework for future research in medical image processing.
Author Hassan, Haseeb
Miao, Xiaoqiang
Huang, Bingding
Zeng, Xueqiang
Kang, Yan
Zaman, Asim
Khan, Rashid
Cao, Anbo
Yang, Yingjian
Guo, Yingwei
Lu, Jiaxi
Yang, Huihui
Author_xml – sequence: 1
  givenname: Asim
  surname: Zaman
  fullname: Zaman, Asim
– sequence: 2
  givenname: Haseeb
  surname: Hassan
  fullname: Hassan, Haseeb
– sequence: 3
  givenname: Xueqiang
  surname: Zeng
  fullname: Zeng, Xueqiang
– sequence: 4
  givenname: Rashid
  surname: Khan
  fullname: Khan, Rashid
– sequence: 5
  givenname: Jiaxi
  surname: Lu
  fullname: Lu, Jiaxi
– sequence: 6
  givenname: Huihui
  surname: Yang
  fullname: Yang, Huihui
– sequence: 7
  givenname: Xiaoqiang
  surname: Miao
  fullname: Miao, Xiaoqiang
– sequence: 8
  givenname: Anbo
  surname: Cao
  fullname: Cao, Anbo
– sequence: 9
  givenname: Yingjian
  surname: Yang
  fullname: Yang, Yingjian
– sequence: 10
  givenname: Bingding
  surname: Huang
  fullname: Huang, Bingding
– sequence: 11
  givenname: Yingwei
  surname: Guo
  fullname: Guo, Yingwei
– sequence: 12
  givenname: Yan
  surname: Kang
  fullname: Kang, Yan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38680446$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu1DAUtVARfcAPsEBespnBiR3HYVe1tFQqsAAkdta1fZ26JE6wMyC-pL-LpzNUFQtWvr46D_ucY3IQp4iEvKzYmnPVvfExxLyuWS3WFZe84-wJOaqkrFei4d8OHs2H5DjnW8ZkrUT9jBxyJRUTQh6Ru1MH8xJ-Ir1AWDYJ6Qd0wcJAP2M_YlxgCVOkH3H5NaXvbylEClsGmAGpQ5zpgJDKQ3o6QwIX-pH6KdGb0N-sZkxlHiFapPycmgQhFnzeKubH8mU97m3DCH1Re06eehgyvtifJ-TrxbsvZ-9X158ur85Or1dWVHxZObA1OmywNSiNgMp0IIxpEX3rGoXQdVYZDthKAS2vpDDKOe6rxklWy46fkKudrpvgVs-p2KffeoKg7xdT6jWkJdgBdd1Y5aoSIDZSCMXKRTpvBffeQAW-aL3eac1p-rHBvOgxZIvDABGnTdacCSW6pu3aAn21h25M-fmD8d9iCqDeAWyack7oHyAV09v29X37etu-3rdfSOofkg27hJcS_fA_6h9-4rmI
CitedBy_id crossref_primary_10_1007_s00521_024_10919_3
crossref_primary_10_3389_frai_2025_1466643
crossref_primary_10_1007_s40747_024_01751_2
crossref_primary_10_1016_j_compbiomed_2025_110380
crossref_primary_10_3390_jimaging11010002
crossref_primary_10_1016_j_ymeth_2025_04_016
crossref_primary_10_3389_fphys_2025_1528067
crossref_primary_10_3233_XST_240108
Cites_doi 10.1016/j.media.2020.101874
10.1109/LGRS.2020.2988294
10.3389/fmed.2023.1273441
10.1007/s00521-022-07419-7
10.1109/TMI.2019.2959609
10.1109/TMI.2020.3046692
10.1016/j.media.2022.102581
10.1007/978-3-030-32226-7_20
10.1109/TMI.2012.2210558
10.3389/fnins.2022.872601
10.1038/s41597-022-01875-5
10.1109/SIU.2019.8806244
10.3389/fnins.2022.1099560
10.1109/CVPR.2018.00745
10.1007/s41019-016-0011-3
10.3389/fonc.2021.638182
10.1007/978-3-319-46723-8_49
10.1016/j.neuroimage.2004.12.007
10.1007/978-3-030-11726-9_28
10.1016/j.neunet.2019.08.025
10.1109/ICASSP40776.2020.9053405
10.1109/ACCESS.2021.3075294
10.1109/TBME.2013.2271383
10.3389/fcomp.2023.1178450
10.1109/ISM46123.2019.00049
10.1109/ISNIB57382.2022.10075787
10.1038/s41598-021-93427-x
10.1049/ipr2.12419
10.1109/TMI.2022.3224873
10.1038/s41592-020-01008-z
10.1016/j.media.2004.06.019
10.3390/diagnostics13132161
10.3389/fnhum.2023.1275795
10.1007/s10554-008-9408-z
10.1109/TMI.2020.3034995
10.1016/j.compbiomed.2021.105123
10.1109/ICPR48806.2021.9413186
10.1007/978-3-319-24574-4_28
10.1109/IACS.2018.8355444
10.1007/978-3-030-01234-2_1
ContentType Journal Article
Copyright Copyright © 2024 Zaman, Hassan, Zeng, Khan, Lu, Yang, Miao, Cao, Yang, Huang, Guo and Kang.
Copyright_xml – notice: Copyright © 2024 Zaman, Hassan, Zeng, Khan, Lu, Yang, Miao, Cao, Yang, Huang, Guo and Kang.
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3389/fnins.2024.1363930
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_25c8d1842e5644808d16dfc43ffba1af
38680446
10_3389_fnins_2024_1363930
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
ACXDI
C1A
IAO
IEA
IHR
ISR
M~E
NPM
7X8
PUEGO
ID FETCH-LOGICAL-c413t-dac2ede5e7be6b4a1b9a4bb7eef7d58ea99c8b3ae764a73164b8dd3f15d602693
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208375000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:50:39 EDT 2025
Fri Sep 05 12:05:11 EDT 2025
Thu Jan 02 22:39:03 EST 2025
Tue Nov 18 22:29:31 EST 2025
Sat Nov 29 04:31:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
attention mechanism
encoder-decoder architecture
neurological diagnostics
computer-aided diagnosis
adaptive feature extraction
medical image analysis
brain lesion segmentation
Language English
License Copyright © 2024 Zaman, Hassan, Zeng, Khan, Lu, Yang, Miao, Cao, Yang, Huang, Guo and Kang.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-dac2ede5e7be6b4a1b9a4bb7eef7d58ea99c8b3ae764a73164b8dd3f15d602693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/25c8d1842e5644808d16dfc43ffba1af
PMID 38680446
PQID 3048495797
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_25c8d1842e5644808d16dfc43ffba1af
proquest_miscellaneous_3048495797
pubmed_primary_38680446
crossref_primary_10_3389_fnins_2024_1363930
crossref_citationtrail_10_3389_fnins_2024_1363930
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Wang (ref39) 2019
Mou (ref27) 2021; 67
Wang (ref40) 2022; 16
Myronenko (ref29) 2019
Kermi (ref20) 2022
Hassan (ref10) 2022; 141
Gooya (ref7) 2012; 31
Ronneberger (ref33) 2015
Hernandez Petzsche (ref11) 2022; 9
Li (ref22) 2020; 18
Huang (ref14) 2020
Xia (ref42) 2022; 82
Hu (ref13) 2018
Anbeek (ref1) 2004; 8
Ibtehaz (ref16) 2020; 121
Limonova (ref24) 2021
Stoyanov (ref36) 2018
Liew (ref23) 2017
Yang (ref43) 2021; 11
Islam (ref18) 2013; 60
Guo (ref9) 2021; 9
Woo (ref41) 2018
Vedaei (ref38) 2023; 16
Baid (ref2) 2021
Zeng (ref45) 2023; 13
Gao (ref6) 2023; 17
Ma (ref25) 2023; 10
Zhou (ref47) 2018
Tan (ref37) 2019
Hurlock (ref15) 2009; 25
Nie (ref30) 2022; 16
Siuly (ref35) 2016; 1
Celaya (ref3) 2022; 42
Isensee (ref17) 2021; 18
Mehrani (ref26) 2023
Mubashar (ref28) 2022; 34
Jha (ref19) 2019
Zhou (ref48) 2019; 39
Chau (ref4) 2005; 25
Çiçek (ref5) 2016
Greenspan (ref8) 2023
Yurtkulu (ref44) 2019
Shatnawi (ref34) 2018
Zhang (ref46) 2020; 40
Li (ref21) 2020; 40
Rashid (ref32) 2021; 11
Howard (ref12) 2017
Oktay (ref31) 2018
References_xml – volume: 67
  start-page: 101874
  year: 2021
  ident: ref27
  article-title: CS2-Net: deep learning segmentation of curvilinear structures in medical imaging
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101874
– volume: 18
  start-page: 905
  year: 2020
  ident: ref22
  article-title: SCAttNet: semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2988294
– volume: 10
  start-page: 1273441
  year: 2023
  ident: ref25
  article-title: SW-UNet: a U-Net fusing sliding window transformer block with CNN for segmentation of lung nodules
  publication-title: Front. Med.
  doi: 10.3389/fmed.2023.1273441
– year: 2017
  ident: ref23
  article-title: The Anatomical Tracings of Lesions After Stroke (ATLAS) Dataset—Release 1.1
– volume: 34
  start-page: 17723
  year: 2022
  ident: ref28
  article-title: R2U++: a multiscale recurrent residual U-net with dense skip connections for medical image segmentation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07419-7
– volume: 39
  start-page: 1856
  year: 2019
  ident: ref48
  article-title: UNet++: redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2959609
– volume: 40
  start-page: 1065
  year: 2020
  ident: ref21
  article-title: Analyzing overfitting under class imbalance in neural networks for image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3046692
– volume: 82
  start-page: 102581
  year: 2022
  ident: ref42
  article-title: 3D vessel-like structure segmentation in medical images by an edge-reinforced network
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102581
– year: 2019
  ident: ref39
  article-title: Volumetric attention for 3D medical image segmentation and detection
  doi: 10.1007/978-3-030-32226-7_20
– volume: 31
  start-page: 1941
  year: 2012
  ident: ref7
  article-title: GLISTR: glioma image segmentation and registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2210558
– volume: 16
  start-page: 872601
  year: 2022
  ident: ref30
  article-title: N-Net: a novel dense fully convolutional neural network for thyroid nodule segmentation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.872601
– year: 2018
  ident: ref31
  article-title: Attention U-Net: learning where to look for the pancreas
– volume: 9
  start-page: 762
  year: 2022
  ident: ref11
  article-title: ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01875-5
– year: 2019
  ident: ref44
  article-title: Semantic segmentation with extended DeepLabv3 architecture
  doi: 10.1109/SIU.2019.8806244
– volume: 16
  start-page: 1099560
  year: 2023
  ident: ref38
  article-title: Identification of chronic mild traumatic brain injury using resting state functional MRI and machine learning techniques
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.1099560
– year: 2018
  ident: ref13
  article-title: Squeeze-and-excitation networks
  doi: 10.1109/CVPR.2018.00745
– volume: 1
  start-page: 54
  year: 2016
  ident: ref35
  article-title: Medical big data: neurological diseases diagnosis through medical data analysis
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-016-0011-3
– volume: 11
  start-page: 638182
  year: 2021
  ident: ref43
  article-title: Artificial convolutional neural network in object detection and semantic segmentation for medical imaging analysis
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.638182
– year: 2016
  ident: ref5
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
  doi: 10.1007/978-3-319-46723-8_49
– volume: 25
  start-page: 408
  year: 2005
  ident: ref4
  article-title: The Talairach coordinate of a point in the MNI space: how to interpret it
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.12.007
– year: 2019
  ident: ref29
  article-title: 3D MRI brain tumor segmentation using autoencoder regularization
  doi: 10.1007/978-3-030-11726-9_28
– volume: 121
  start-page: 74
  year: 2020
  ident: ref16
  article-title: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.08.025
– start-page: 21013
  year: 2019
  ident: ref37
  article-title: EfficientNet: rethinking model scaling for convolutional neural networks
– year: 2020
  ident: ref14
  article-title: UNet 3+: A full-scale connected UNet for medical image segmentation
  doi: 10.1109/ICASSP40776.2020.9053405
– volume: 9
  start-page: 69382
  year: 2021
  ident: ref9
  article-title: Double U-Nets for image segmentation by integrating the region and boundary information
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3075294
– volume: 60
  start-page: 3204
  year: 2013
  ident: ref18
  article-title: Multifractal texture estimation for detection and segmentation of brain tumors
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2271383
– year: 2023
  ident: ref26
  article-title: Self-attention in vision transformers performs perceptual grouping, not attention
  doi: 10.3389/fcomp.2023.1178450
– year: 2019
  ident: ref19
  article-title: ResUNet++: an advanced architecture for medical image segmentation
  doi: 10.1109/ISM46123.2019.00049
– year: 2022
  ident: ref20
  article-title: A deep learning-based 3D-GAN for glioma subregions detection and segmentation in multimodal brain MRI volumes
  doi: 10.1109/ISNIB57382.2022.10075787
– volume: 11
  start-page: 14124
  year: 2021
  ident: ref32
  article-title: DEEPMIR: a deep neural network for differential detection of cerebral microbleeds and iron deposits in MRI
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-93427-x
– year: 2021
  ident: ref2
  article-title: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification
– volume: 16
  start-page: 1243
  year: 2022
  ident: ref40
  article-title: Medical image segmentation using deep learning: a survey
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12419
– volume: 42
  start-page: 1172
  year: 2022
  ident: ref3
  article-title: PocketNet: a smaller neural network for medical image analysis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3224873
– volume: 18
  start-page: 203
  year: 2021
  ident: ref17
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 8
  start-page: 205
  year: 2004
  ident: ref1
  article-title: Automatic segmentation of different-sized white matter lesions by voxel probability estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.06.019
– volume: 13
  start-page: 2161
  year: 2023
  ident: ref45
  article-title: Tubular structure segmentation via multi-scale reverse attention sparse convolution
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13132161
– volume: 17
  start-page: 1275795
  year: 2023
  ident: ref6
  article-title: MMGan: a multimodal MR brain tumor image segmentation method
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2023.1275795
– volume: 25
  start-page: 31
  year: 2009
  ident: ref15
  article-title: History of cardiac computed tomography: single to 320-detector row multislice computed tomography
  publication-title: Int. J. Cardiovasc. Imaging
  doi: 10.1007/s10554-008-9408-z
– start-page: 14224
  year: 2023
  ident: ref8
– volume: 40
  start-page: 661
  year: 2020
  ident: ref46
  article-title: Inter-slice context residual learning for 3D medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3034995
– volume: 141
  start-page: 105123
  year: 2022
  ident: ref10
  article-title: Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105123
– start-page: 11040
  year: 2018
  ident: ref36
– year: 2021
  ident: ref24
  article-title: ResNet-like architecture with low hardware requirements
  doi: 10.1109/ICPR48806.2021.9413186
– year: 2015
  ident: ref33
  article-title: U-Net: convolutional networks for biomedical image segmentation
  doi: 10.1007/978-3-319-24574-4_28
– year: 2017
  ident: ref12
  article-title: MobileNets: efficient convolutional neural networks for mobile vision applications
– year: 2018
  ident: ref34
  article-title: A comparative study of open source deep learning frameworks
  doi: 10.1109/IACS.2018.8355444
– year: 2018
  ident: ref47
– year: 2018
  ident: ref41
  article-title: CBAM: convolutional block attention module
  doi: 10.1007/978-3-030-01234-2_1
SSID ssj0062842
Score 2.4028137
Snippet In neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its complex...
IntroductionIn neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 1363930
SubjectTerms adaptive feature extraction
attention mechanism
brain lesion segmentation
computer-aided diagnosis
encoder-decoder architecture
medical image analysis
Title Adaptive Feature Medical Segmentation Network: an adaptable deep learning paradigm for high-performance 3D brain lesion segmentation in medical imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/38680446
https://www.proquest.com/docview/3048495797
https://doaj.org/article/25c8d1842e5644808d16dfc43ffba1af
Volume 18
WOSCitedRecordID wos001208375000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag5cClAspjC6yMhLigqJs4iR1uW2gFh64iHtJysvwYr1Yi6WoflfpL-nc742SXvQAXLpZi-RXPeDxjj-dj7G0KpUM9WSUO8jLJjcc1VwRMjLdAXlGZsBFsQk4majqt6j2oL_IJ68IDdxN3mhVOeTRDMijIlBjhR-mDy0UI1qQmkPQdyWprTHUyuEShm3VPZNAEq05DO28pNneWk1uXqMjneW8bitH6_6xixq3m4hE76nVEPu7G9pjdg_YJOx63aB83N_wdj16b8Tj8mN2OvVmQyOKkzG2WwPurF_4NZk3_sKjlk87b-wM3LTdUg15McQ-w4D1uxIxTFHA_nzUc9VhOYYyTxe9XBVx84pbgJLA8HbDx1X7zmN303c6biHv0lP24OP_-8XPSgy0kDvexdeKNy8BDAdJCaXOT2srk1kqAIH2hwFSVU1YYkGVuCO4qt8p7EdLCE4pVJZ6xg_aqhReMBxUqU0BqIHjU1kYmsxmMwIYipAFbGbB0O_fa9ZHICRDjl0aLhOilI7000Uv39Bqw97s6iy4Ox19LnxFJdyUphnbMQM7SPWfpf3HWgL3ZMoTGNUcXKaaFq81KCxR7Od1vygF73nHKriuhSkWX5Cf_Ywgv2UP6re7I5xU7WC838Jo9cNfr-Wo5ZPflVA3Z4dn5pP46jAsA08usplRielh_uax_3gEK8hDm
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Feature+Medical+Segmentation+Network%3A+an+adaptable+deep+learning+paradigm+for+high-performance+3D+brain+lesion+segmentation+in+medical+imaging&rft.jtitle=Frontiers+in+neuroscience&rft.au=Zaman%2C+Asim&rft.au=Hassan%2C+Haseeb&rft.au=Zeng%2C+Xueqiang&rft.au=Khan%2C+Rashid&rft.date=2024&rft.issn=1662-453X&rft.eissn=1662-453X&rft.volume=18&rft_id=info:doi/10.3389%2Ffnins.2024.1363930&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnins_2024_1363930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon