Efficient In-Loop Filtering Based on Enhanced Deep Convolutional Neural Networks for HEVC

The raw video data can be compressed much by the latest video coding standard, high efficiency video coding (HEVC). However, the block-based hybrid coding used in HEVC will incur lots of artifacts in compressed videos, the video quality will be severely influenced. To settle this problem, the in-loo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 29; s. 5352 - 5366
Hlavní autoři: Pan, Zhaoqing, Yi, Xiaokai, Zhang, Yun, Jeon, Byeungwoo, Kwong, Sam
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The raw video data can be compressed much by the latest video coding standard, high efficiency video coding (HEVC). However, the block-based hybrid coding used in HEVC will incur lots of artifacts in compressed videos, the video quality will be severely influenced. To settle this problem, the in-loop filtering is used in HEVC to eliminate artifacts. Inspired by the success of deep learning, we propose an efficient in-loop filtering algorithm based on the enhanced deep convolutional neural networks (EDCNN) for significantly improving the performance of in-loop filtering in HEVC. Firstly, the problems of traditional convolutional neural networks models, including the normalization method, network learning ability, and loss function, are analyzed. Then, based on the statistical analyses, the EDCNN is proposed for efficiently eliminating the artifacts, which adopts three solutions, including a weighted normalization method, a feature information fusion block, and a precise loss function. Finally, the PSNR enhancement, PSNR smoothness, RD performance, subjective test, and computational complexity/GPU memory consumption are employed as the evaluation criteria, and experimental results show that when compared with the filter in HM16.9, the proposed in-loop filtering algorithm achieves an average of 6.45% BDBR reduction and 0.238 dB BDPSNR gains.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2020.2982534