Computing tight bounds via piecewise linear functions through the example of circle cutting problems

This paper discusses approximations of continuous and mixed-integer non-linear optimization problems via piecewise linear functions. Various variants of circle cutting problems are considered, where the non-overlap of circles impose a non-convex feasible region. While the paper is written in an “eas...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods of operations research (Heidelberg, Germany) Vol. 84; no. 1; pp. 3 - 57
Main Author: Rebennack, Steffen
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2016
Springer Nature B.V
Subjects:
ISSN:1432-2994, 1432-5217
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper discusses approximations of continuous and mixed-integer non-linear optimization problems via piecewise linear functions. Various variants of circle cutting problems are considered, where the non-overlap of circles impose a non-convex feasible region. While the paper is written in an “easy-to-understand” and “hands-on” style which should be accessible to graduate students, also new ideas are presented. Specifically, piecewise linear functions are employed to yield mixed-integer linear programming problems which provide lower and upper bounds on the original problem, the circle cutting problem. The piecewise linear functions are modeled by five different formulations, containing the incremental and logarithmic formulations. Another variant of the cutting problem involves the assignment of circles to pre-defined rectangles. We introduce a new global optimization algorithm, based on piecewise linear function approximations, which converges in finitely many iterations to a globally optimal solution. The discussed formulations are implemented in GAMS. All GAMS-files are available for download in the Electronic supplementary material. Extensive computational results are presented with various illustrations.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1432-2994
1432-5217
DOI:10.1007/s00186-016-0546-0