A neural algorithm for a fundamental computing problem

Similarity search-for example, identifying similar images in a database or similar documents on the web-is a fundamental computing problem faced by large-scale information retrieval systems. We discovered that the fruit fly olfactory circuit solves this problem with a variant of a computer science a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Science (American Association for the Advancement of Science) Ročník 358; číslo 6364; s. 793
Hlavní autori: Dasgupta, Sanjoy, Stevens, Charles F, Navlakha, Saket
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 10.11.2017
Predmet:
ISSN:1095-9203, 1095-9203
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Similarity search-for example, identifying similar images in a database or similar documents on the web-is a fundamental computing problem faced by large-scale information retrieval systems. We discovered that the fruit fly olfactory circuit solves this problem with a variant of a computer science algorithm (called locality-sensitive hashing). The fly circuit assigns similar neural activity patterns to similar odors, so that behaviors learned from one odor can be applied when a similar odor is experienced. The fly algorithm, however, uses three computational strategies that depart from traditional approaches. These strategies can be translated to improve the performance of computational similarity searches. This perspective helps illuminate the logic supporting an important sensory function and provides a conceptually new algorithm for solving a fundamental computational problem.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1095-9203
1095-9203
DOI:10.1126/science.aam9868