Multirate Layered Space-Time Coding and Successive Interference Cancellation Receivers in Quasi-Static Fading Channels
We investigate the performance of multirate layered space-time coded MIMO systems with successive decoding and interference cancellation (SDIC) receivers in quasi-static Rayleigh fading channels. The proposed framework can be viewed as a class of diagonal layered space-time coded system with each of...
Uloženo v:
| Vydáno v: | IEEE transactions on wireless communications Ročník 6; číslo 12; s. 4524 - 4533 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway, NJ
IEEE
01.12.2007
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1536-1276, 1558-2248 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We investigate the performance of multirate layered space-time coded MIMO systems with successive decoding and interference cancellation (SDIC) receivers in quasi-static Rayleigh fading channels. The proposed framework can be viewed as a class of diagonal layered space-time coded system with each of the layers is encoded independently with different rates subject to equal per-layer outage probabilities. We derive the probability density functions of the per-layer mutual informations, which can be used to estimate the per-layer rates. Using these densities we show that the proposed transceiver increases the outage capacity. We also present simulation results illustrating the outage capacity performance for a variety of transmit and receive antenna combinations and the associated near optimal per-layer rates of input signals. In particular we show that for sufficiently large numbers of transmit and receive antennas, the system can achieve near capacity in quasi-static fading environments. Based on these results, multirate codes are designed using punctured turbo codes and simulation results show significant gains in packet error-rate (PER) performances compared to that of V-BLAST architectures with lower receiver complexities. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 1536-1276 1558-2248 |
| DOI: | 10.1109/TWC.2007.060399 |