Hierarchical and symmetric infant image registration by robust longitudinal‐example‐guided correspondence detection

Purpose: To investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform accurate image registration. However, due to fast brain development and dynamic tissue appearance changes, it is very difficult to align infant br...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical physics (Lancaster) Ročník 42; číslo 7; s. 4174 - 4189
Hlavní autori: Wu, Yao, Wu, Guorong, Wang, Li, Munsell, Brent C., Wang, Qian, Lin, Weili, Feng, Qianjin, Chen, Wufan, Shen, Dinggang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Association of Physicists in Medicine 01.07.2015
Predmet:
ISSN:0094-2405, 2473-4209, 2473-4209
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose: To investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform accurate image registration. However, due to fast brain development and dynamic tissue appearance changes, it is very difficult to align infant brain images acquired from birth to 1‐yr‐old. Methods: To solve this challenging problem, a novel image registration method is proposed to align two infant brain images, regardless of age at acquisition. The main idea is to utilize the growth trajectories, or spatial‐temporal correspondences, learned from a set of longitudinal training images, for guiding the registration of two different time‐point images with different image appearances. Specifically, in the training stage, an intrinsic growth trajectory is first estimated for each training subject using the longitudinal images. To register two new infant images with potentially a large age gap, the corresponding images patches between each new image and its respective training images with similar age are identified. Finally, the registration between the two new images can be assisted by the learned growth trajectories from one time point to another time point that have been established in the training stage. To further improve registration accuracy, the proposed method is combined with a hierarchical and symmetric registration framework that can iteratively add new key points in both images to steer the estimation of the deformation between the two infant brain images under registration. Results: To evaluate image registration accuracy, the proposed method is used to align 24 infant subjects at five different time points (2‐week‐old, 3‐month‐old, 6‐month‐old, 9‐month‐old, and 12‐month‐old). Compared to the state‐of‐the‐art methods, the proposed method demonstrated superior registration performance. Conclusions: The proposed method addresses the difficulties in the infant brain registration and produces better results compared to existing state‐of‐the‐art registration methods.
AbstractList To investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform accurate image registration. However, due to fast brain development and dynamic tissue appearance changes, it is very difficult to align infant brain images acquired from birth to 1-yr-old. To solve this challenging problem, a novel image registration method is proposed to align two infant brain images, regardless of age at acquisition. The main idea is to utilize the growth trajectories, or spatial-temporal correspondences, learned from a set of longitudinal training images, for guiding the registration of two different time-point images with different image appearances. Specifically, in the training stage, an intrinsic growth trajectory is first estimated for each training subject using the longitudinal images. To register two new infant images with potentially a large age gap, the corresponding images patches between each new image and its respective training images with similar age are identified. Finally, the registration between the two new images can be assisted by the learned growth trajectories from one time point to another time point that have been established in the training stage. To further improve registration accuracy, the proposed method is combined with a hierarchical and symmetric registration framework that can iteratively add new key points in both images to steer the estimation of the deformation between the two infant brain images under registration. To evaluate image registration accuracy, the proposed method is used to align 24 infant subjects at five different time points (2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old). Compared to the state-of-the-art methods, the proposed method demonstrated superior registration performance. The proposed method addresses the difficulties in the infant brain registration and produces better results compared to existing state-of-the-art registration methods.
To investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform accurate image registration. However, due to fast brain development and dynamic tissue appearance changes, it is very difficult to align infant brain images acquired from birth to 1-yr-old.PURPOSETo investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform accurate image registration. However, due to fast brain development and dynamic tissue appearance changes, it is very difficult to align infant brain images acquired from birth to 1-yr-old.To solve this challenging problem, a novel image registration method is proposed to align two infant brain images, regardless of age at acquisition. The main idea is to utilize the growth trajectories, or spatial-temporal correspondences, learned from a set of longitudinal training images, for guiding the registration of two different time-point images with different image appearances. Specifically, in the training stage, an intrinsic growth trajectory is first estimated for each training subject using the longitudinal images. To register two new infant images with potentially a large age gap, the corresponding images patches between each new image and its respective training images with similar age are identified. Finally, the registration between the two new images can be assisted by the learned growth trajectories from one time point to another time point that have been established in the training stage. To further improve registration accuracy, the proposed method is combined with a hierarchical and symmetric registration framework that can iteratively add new key points in both images to steer the estimation of the deformation between the two infant brain images under registration.METHODSTo solve this challenging problem, a novel image registration method is proposed to align two infant brain images, regardless of age at acquisition. The main idea is to utilize the growth trajectories, or spatial-temporal correspondences, learned from a set of longitudinal training images, for guiding the registration of two different time-point images with different image appearances. Specifically, in the training stage, an intrinsic growth trajectory is first estimated for each training subject using the longitudinal images. To register two new infant images with potentially a large age gap, the corresponding images patches between each new image and its respective training images with similar age are identified. Finally, the registration between the two new images can be assisted by the learned growth trajectories from one time point to another time point that have been established in the training stage. To further improve registration accuracy, the proposed method is combined with a hierarchical and symmetric registration framework that can iteratively add new key points in both images to steer the estimation of the deformation between the two infant brain images under registration.To evaluate image registration accuracy, the proposed method is used to align 24 infant subjects at five different time points (2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old). Compared to the state-of-the-art methods, the proposed method demonstrated superior registration performance.RESULTSTo evaluate image registration accuracy, the proposed method is used to align 24 infant subjects at five different time points (2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old). Compared to the state-of-the-art methods, the proposed method demonstrated superior registration performance.The proposed method addresses the difficulties in the infant brain registration and produces better results compared to existing state-of-the-art registration methods.CONCLUSIONSThe proposed method addresses the difficulties in the infant brain registration and produces better results compared to existing state-of-the-art registration methods.
Purpose: To investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform accurate image registration. However, due to fast brain development and dynamic tissue appearance changes, it is very difficult to align infant brain images acquired from birth to 1‐yr‐old. Methods: To solve this challenging problem, a novel image registration method is proposed to align two infant brain images, regardless of age at acquisition. The main idea is to utilize the growth trajectories, or spatial‐temporal correspondences, learned from a set of longitudinal training images, for guiding the registration of two different time‐point images with different image appearances. Specifically, in the training stage, an intrinsic growth trajectory is first estimated for each training subject using the longitudinal images. To register two new infant images with potentially a large age gap, the corresponding images patches between each new image and its respective training images with similar age are identified. Finally, the registration between the two new images can be assisted by the learned growth trajectories from one time point to another time point that have been established in the training stage. To further improve registration accuracy, the proposed method is combined with a hierarchical and symmetric registration framework that can iteratively add new key points in both images to steer the estimation of the deformation between the two infant brain images under registration. Results: To evaluate image registration accuracy, the proposed method is used to align 24 infant subjects at five different time points (2‐week‐old, 3‐month‐old, 6‐month‐old, 9‐month‐old, and 12‐month‐old). Compared to the state‐of‐the‐art methods, the proposed method demonstrated superior registration performance. Conclusions: The proposed method addresses the difficulties in the infant brain registration and produces better results compared to existing state‐of‐the‐art registration methods.
Author Wu, Guorong
Wang, Li
Wu, Yao
Munsell, Brent C.
Lin, Weili
Wang, Qian
Shen, Dinggang
Feng, Qianjin
Chen, Wufan
Author_xml – sequence: 1
  givenname: Yao
  surname: Wu
  fullname: Wu, Yao
– sequence: 2
  givenname: Guorong
  surname: Wu
  fullname: Wu, Guorong
– sequence: 3
  givenname: Li
  surname: Wang
  fullname: Wang, Li
– sequence: 4
  givenname: Brent C.
  surname: Munsell
  fullname: Munsell, Brent C.
– sequence: 5
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
– sequence: 6
  givenname: Weili
  surname: Lin
  fullname: Lin, Weili
– sequence: 7
  givenname: Qianjin
  surname: Feng
  fullname: Feng, Qianjin
– sequence: 8
  givenname: Wufan
  surname: Chen
  fullname: Chen, Wufan
– sequence: 9
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26133617$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9u1DAQhy1URLeFAy-AfIRDWv9Lsr4goYpSpCI4wNly7Elq5NiL7VD21kfgGXkS3O4WAYKTLfmb7-eZOUIHIQZA6CklJ5TS9Sk9EZIxLvkDtGKi541gRB6gFSFSNEyQ9hAd5fyZENLxljxCh6yjnHe0X6HrCwdJJ3PljPZYB4vzdp6hJGewC6MOBbtZT4ATTC6XpIuLAQ9bnOKw5IJ9DJMri3VB-x833-Gbnjce6m1anAWLTUwJ8iYGC8EAtlDA3Coeo4ej9hme7M9j9On89cezi-by_Zu3Z68uGyPqF5sW6NBKzkW7lrIToOlIulFQBnqAgY1CCt0zPvChZdT0oxxtZzVdc0LWY8c1P0Yvd97NMsxgDYTag1ebVLtKWxW1U3--BHelpvhVCdEL2YoqeL4XpPhlgVzU7LIB73WAuGRFO8l7RnsmK_rs96xfIffTrsDpDjAp5pxgVMaVu4nWaOcVJep2n4qq_T5rxYu_Ku6l_2KbHXvtPGz_D6p3H-74nznAsik
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2957233
crossref_primary_10_1109_TMI_2021_3137280
crossref_primary_10_1016_j_neucom_2016_05_107
crossref_primary_10_1007_s00429_018_1735_9
crossref_primary_10_1016_j_media_2019_101540
crossref_primary_10_1016_j_neuroimage_2018_03_042
crossref_primary_10_3389_fnhum_2022_1108253
crossref_primary_10_1002_mp_12578
Cites_doi 10.1016/j.neuroimage.2008.12.037
10.1523/JNEUROSCI.3479‐08.2008
10.1073/pnas.0407828102
10.1016/j.neuroimage.2008.10.040
10.1016/j.neuron.2010.08.040
10.1016/j.tics.2005.01.011
10.1111/j.1467‐9868.2005.00503.x
10.1016/S0361‐9230(00)00434‐2
10.1016/j.media.2006.06.007
10.1109/TMI.2011.2163944
10.1007/978-3-642-15699-1_5
10.1109/TMI.2004.834616
10.1016/j.neuroimage.2013.03.021
10.1016/j.neuroimage.2009.10.065
10.1016/S1361‐8415(01)00036‐6
10.1016/j.neuroimage.2009.04.068
10.1093/cercor/bhs197
10.1109/TMI.2013.2265603
10.1016/j.neuroimage.2011.03.050
10.1155/2011/572187
10.1371/journal.pone.0018746
10.1109/TMI.2013.2269814
10.1371/journal.pone.0044596
10.1016/j.neuroimage.2010.07.025
10.1016/j.media.2010.07.002
10.1016/j.neuroimage.2013.08.008
10.1007/BFb0056301
10.1016/j.neuroimage.2013.11.040
10.2214/ajr.150.4.889
10.1016/j.neuroimage.2003.12.015
10.1016/j.neuroimage.2009.02.043
10.1109/taes.1974.307828
10.1111/j.2517-6161.1996.tb02080.x
10.1109/34.24792
10.1016/j.neuroimage.2009.04.055
10.1016/j.neuroimage.2007.07.007
10.1109/JPROC.2010.2044470
10.1016/S1361‐8415(01)80004‐9
10.1016/s0262‐8856(98)00141‐3
10.1007/978-3-642-35428-1_7
10.1109/42.668698
10.1002/hbm.22233
10.1007/978-3-642-23626-6_39
10.1007/s12021‐012‐9164‐z
10.1016/j.neuroimage.2007.07.067
10.1523/JNEUROSCI.2106‐10.2011
10.1126/science.287.5456.1273
10.1007/978-3-540-75759-7_16
10.1109/tmi.2002.803111
ContentType Journal Article
Copyright 2015 American Association of Physicists in Medicine
Copyright © 2015 American Association of Physicists in Medicine 2015 American Association of Physicists in Medicine
Copyright_xml – notice: 2015 American Association of Physicists in Medicine
– notice: Copyright © 2015 American Association of Physicists in Medicine 2015 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1118/1.4922393
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Hierarchical and symmetric infant image registration
EISSN 2473-4209
EndPage 4189
ExternalDocumentID PMC4474954
26133617
10_1118_1_4922393
MP2393
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH100217
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NINDS NIH HHS
  grantid: NS055754
– fundername: NIA NIH HHS
  grantid: R01 AG042599
– fundername: NIA NIH HHS
  grantid: AG042599
– fundername: NINDS NIH HHS
  grantid: R01 NS055754
– fundername: NIBIB NIH HHS
  grantid: EB006733
– fundername: NIMH NIH HHS
  grantid: MH070890
– fundername: NIBIB NIH HHS
  grantid: EB008374
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4133-5e1b59334589964ea1f06f412eabeb2f494a723b3b521c7f9fd6da183008f63a3
IEDL.DBID DRFUL
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000357686400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
2473-4209
IngestDate Tue Nov 04 01:58:50 EST 2025
Thu Sep 04 19:59:43 EDT 2025
Wed Feb 19 01:57:56 EST 2025
Sat Nov 29 01:32:44 EST 2025
Tue Nov 18 22:13:04 EST 2025
Wed Jan 22 16:57:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
0094-2405/2015/42(7)/4174/16/$30.00
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4133-5e1b59334589964ea1f06f412eabeb2f494a723b3b521c7f9fd6da183008f63a3
Notes bmunsell@cofc.edu
yaowu1588@gmail.com
qianjinfeng08@gmail.com
dgshen@med.unc.edu
weili_lin@med.unc.edu
,
wang.qian@sjtu.edu.cn
grwu@med.unc.edu
and
li_wang@med.unc.edu
wufanchen@gmail.com
Authors to whom correspondence should be addressed. Electronic addresses
Electronic addresses
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
Electronic addresses: yaowu1588@gmail.com, grwu@med.unc.edu, li_wang@med.unc.edu, bmunsell@cofc.edu, wang.qian@sjtu.edu.cn, weili_lin@med.unc.edu, and wufanchen@gmail.com
Authors to whom correspondence should be addressed. Electronic addresses: qianjinfeng08@gmail.com and dgshen@med.unc.edu
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.4922393
PMID 26133617
PQID 1693721729
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4474954
proquest_miscellaneous_1693721729
pubmed_primary_26133617
crossref_citationtrail_10_1118_1_4922393
crossref_primary_10_1118_1_4922393
wiley_primary_10_1118_1_4922393_MP2393
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2015
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References 2004; 21
2009; 45
2009; 47
2010; 98
2009; 46
2012
1988; 150
2011
2010
2006; 10
2013; 23
2004; 23
2008; 39
2011; 31
1998
2011; 54
2011; 56
2008; 11
2011; 15
2011; 14
1996; 58
2007; 10
2014; 84
2014; 89
2005; 67
2012; 31
2007; 38
2010; 67
1998; 17
2010; 49
1989; 11
2013; 11
2013; 32
2013; 76
2001; 5
2013; 35
2005; 102
2005; 9
1999; 17
2002; 21
2008; 28
1964; 30
1996; 1
1974; AES‐10
2000; 287
2012; 7
2010; 6
2001; 54
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_30_1
e_1_2_6_19_1
Yang J. (e_1_2_6_26_1) 2008
e_1_2_6_13_1
e_1_2_6_36_1
Tibshirani R. (e_1_2_6_48_1) 1996; 58
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Collignon A. (e_1_2_6_34_1)
Hammersley J. M. (e_1_2_6_44_1) 1964; 30
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Cheng H. (e_1_2_6_50_1)
Serag A. (e_1_2_6_32_1)
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_46_1
20826305 - Neuron. 2010 Sep 9;67(5):728-34
23523806 - Neuroimage. 2013 Aug 1;76:216-24
19195496 - Neuroimage. 2009 Jul 1;46(3):786-802
23968736 - Neuroimage. 2014 Jan 1;84:141-58
19398022 - Neuroimage. 2009 Aug 15;47(2):549-63
23283836 - Hum Brain Mapp. 2014 Mar;35(3):1044-60
15493695 - IEEE Trans Med Imaging. 2004 Oct;23(10):1276-91
23055044 - Neuroinformatics. 2013 Apr;11(2):211-25
15737818 - Trends Cogn Sci. 2005 Mar;9(3):104-10
16887376 - Med Image Anal. 2006 Oct;10(5):740-51
9873920 - Med Image Anal. 1996 Mar;1(1):35-51
19041946 - Neuroimage. 2009 Mar;45(1 Suppl):S61-72
22772652 - Cereb Cortex. 2013 Sep;23(9):2100-17
11287130 - Brain Res Bull. 2001 Feb;54(3):255-66
23739795 - IEEE Trans Med Imaging. 2013 Jul;32(7):1153-90
17919930 - Neuroimage. 2008 Jan 1;39(1):348-58
21827972 - IEEE Trans Med Imaging. 2012 Feb;31(2):153-63
21533194 - PLoS One. 2011;6(4):e18746
15860588 - Proc Natl Acad Sci U S A. 2005 May 10;102(19):6978-83
2450448 - AJR Am J Roentgenol. 1988 Apr;150(4):889-96
19020011 - J Neurosci. 2008 Nov 19;28(47):12176-82
19409502 - Neuroimage. 2009 Aug 15;47(2):564-72
21228187 - J Neurosci. 2011 Jan 12;31(2):784-91
19878724 - Neuroimage. 2010 Feb 1;49(3):2225-33
18044561 - Med Image Comput Comput Assist Interv. 2007;10(Pt 2):127-35
22003714 - Med Image Comput Comput Assist Interv. 2011;14(Pt 3):313-21
18982691 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):905-13
11516708 - Med Image Anal. 2001 Jun;5(2):143-56
21941523 - Int J Biomed Imaging. 2011;2011:572187
23049751 - PLoS One. 2012;7(9):e44596
9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97
10678835 - Science. 2000 Feb 18;287(5456):1273-6
23846465 - IEEE Trans Med Imaging. 2013 Oct;32(10):1939-51
20650319 - Neuroimage. 2011 Feb 1;54(3):1862-71
19285145 - Neuroimage. 2009 Oct 1;47(4):1277-87
20688559 - Med Image Anal. 2011 Aug;15(4):622-39
15050575 - Neuroimage. 2004 Apr;21(4):1508-17
12575879 - IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39
24291615 - Neuroimage. 2014 Apr 1;89:152-64
17761438 - Neuroimage. 2007 Oct 15;38(1):95-113
21440646 - Neuroimage. 2011 Jun 15;56(4):1968-81
References_xml – volume: 47
  start-page: 1277
  year: 2009
  end-page: 1287
  article-title: RABBIT: Rapid alignment of brains by building intermediate templates
  publication-title: NeuroImage
– volume: 67
  start-page: 728
  year: 2010
  end-page: 734
  article-title: Structural MRI of pediatric brain development: What have we learned and where are we going?
  publication-title: Neuron
– start-page: 54
  year: 2012
  end-page: 62
  article-title: Sparse patch‐guided deformation estimation for improved image registration
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
– volume: 6
  start-page: e18746
  year: 2010
  article-title: Infant brain atlases from neonates to 1‐ and 2‐year‐olds
  publication-title: PLoS One
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
– volume: 49
  start-page: 2225
  year: 2010
  end-page: 2233
  article-title: TPS‐HAMMER: Improving HAMMER registration algorithm by soft correspondence matching and thin‐plate splines based deformation interpolation
  publication-title: NeuroImage
– volume: 11
  start-page: 905
  year: 2008
  end-page: 913
  article-title: Diffusion tensor image registration using tensor geometry and orientation features
– volume: 150
  start-page: 889
  year: 1988
  end-page: 896
  article-title: MR evaluation of early myelination patterns in normal and developmentally delayed infants
  publication-title: Am. J. Roentgenol.
– volume: 54
  start-page: 1862
  year: 2011
  end-page: 1871
  article-title: Brain anatomical networks in early human brain development
  publication-title: NeuroImage
– volume: 32
  start-page: 1153
  year: 2013
  end-page: 1190
  article-title: Deformable medical image registration: A survey
  publication-title: IEEE Trans. Med. Imaging
– volume: 21
  start-page: 1421
  year: 2002
  end-page: 1439
  article-title: HAMMER: Hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 1
  start-page: 35
  year: 1996
  end-page: 51
  article-title: Multi‐modal volume registration by maximization of mutual information
  publication-title: Med. Image Anal.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: NeuroImage
– volume: 28
  start-page: 12176
  year: 2008
  end-page: 12182
  article-title: A structural MRI study of human brain development from birth to 2 years
  publication-title: J. Neurosci.
– volume: 39
  start-page: 348
  year: 2008
  end-page: 358
  article-title: Assessment of brain growth in early childhood using deformation‐based morphometry
  publication-title: NeuroImage
– start-page: 1115
  year: 1998
  end-page: 1124
  article-title: The correlation ratio as a new similarity measure for multimodal image registration
– volume: 102
  start-page: 6978
  year: 2005
  end-page: 6983
  article-title: Spatiotemporal maturation patterns of murine brain quantified by diffusion tensor MRI and deformation‐based morphometry
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 31
  start-page: 153
  year: 2012
  end-page: 163
  article-title: Image similarity and tissue overlaps as surrogates for image registration accuracy: Widely used but unreliable
  publication-title: IEEE Trans. Med. Imaging
– volume: 23
  start-page: 2100
  year: 2013
  end-page: 2117
  article-title: Regional infant brain development: An MRI‐based morphometric analysis in 3 to 13 month olds
  publication-title: Cereb. Cortex
– volume: 54
  start-page: 255
  year: 2001
  end-page: 266
  article-title: Maturation of white matter in the human brain: A review of magnetic resonance studies
  publication-title: Brain Res. Bull.
– volume: 31
  start-page: 784
  year: 2011
  end-page: 791
  article-title: Mapping infant brain myelination with magnetic resonance imaging
  publication-title: J. Neurosci.
– volume: 23
  start-page: 1276
  year: 2004
  end-page: 1291
  article-title: Determining correspondence in 3‐D MR brain images using attribute vectors as morphological signatures of voxels
  publication-title: IEEE Trans. Med. Imaging
– volume: 46
  start-page: 786
  year: 2009
  end-page: 802
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: NeuroImage
– volume: 21
  start-page: 1508
  year: 2004
  end-page: 1517
  article-title: Measuring temporal morphological changes robustly in brain MR images via 4‐dimensional template warping
  publication-title: NeuroImage
– volume: 14
  start-page: 313
  year: 2011
  end-page: 321
  article-title: Learning‐based meta‐algorithm for MRI brain extraction
– volume: 45
  start-page: S61
  year: 2009
  end-page: S72
  article-title: Diffeomorphic demons: Efficient non‐parametric image registration
  publication-title: NeuroImage
– volume: 11
  start-page: 567
  year: 1989
  end-page: 585
  article-title: Principal warps: Thin‐plate splines and the decomposition of deformations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 84
  start-page: 141
  year: 2014
  end-page: 158
  article-title: Segmentation of neonatal brain MR images using patch‐driven level sets
  publication-title: Neuroimage
– volume: AES‐10
  start-page: 353
  year: 1974
  end-page: 358
  article-title: Correlation techniques of image registration
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 30
  start-page: 347
  issue: 2–3
  year: 1964
  end-page: 385
  article-title: Monte Carlo methods
  publication-title: Monographs on Applied Probability & Statistics
– volume: 89
  start-page: 152
  year: 2014
  end-page: 164
  article-title: Integration of sparse multi‐modality representation and anatomical constraint for isointense infant brain MR image segmentation
  publication-title: NeuroImage
– volume: 287
  start-page: 1273
  year: 2000
  end-page: 1276
  article-title: Sparse coding and decorrelation in primary visual cortex during natural vision
  publication-title: Science
– start-page: 42
  year: 2010
  end-page: 50
  article-title: Spatial‐temporal constraint for segmentation of serial infant brain MR images
– volume: 11
  start-page: 211
  year: 2013
  end-page: 225
  article-title: iBEAT: A toolbox for infant brain magnetic resonance image processing
  publication-title: Neuroinformatics
– volume: 76
  start-page: 216
  year: 2013
  end-page: 224
  article-title: Development of cortical anatomical properties from early childhood to early adulthood
  publication-title: NeuroImage
– volume: 98
  start-page: 1031
  year: 2010
  end-page: 1044
  article-title: Sparse representation for computer vision and pattern recognition
  publication-title: Proc. IEEE
– volume: 15
  start-page: 622
  year: 2011
  end-page: 639
  article-title: DRAMMS: Deformable registration via attribute matching and mutual‐saliency weighting
  publication-title: Med. Image Anal.
– volume: 35
  start-page: 1044
  year: 2013
  end-page: 1060
  article-title: S‐HAMMER: Hierarchical attribute‐guided, symmetric diffeomorphic registration for MR brain images
  publication-title: Hum. Brain Mapp.
– volume: 7
  start-page: e44596
  year: 2012
  article-title: 4D multi‐modality tissue segmentation of serial infant images
  publication-title: PLoS One
– volume: 32
  start-page: 1939
  year: 2013
  end-page: 1951
  article-title: Longitudinal image registration with temporally‐dependent image similarity measure
  publication-title: IEEE Trans. Med. Imaging
– volume: 47
  start-page: 549
  year: 2009
  end-page: 563
  article-title: TIMER: Tensor image morphing for elastic registration
  publication-title: NeuroImage
– volume: 56
  start-page: 1968
  year: 2011
  end-page: 1981
  article-title: SharpMean: Groupwise registration guided by sharp mean image and tree‐based registration
  publication-title: NeuroImage
– volume: 10
  start-page: 127
  year: 2007
  end-page: 135
  article-title: Longitudinal cortical registration for developing neonates
– volume: 47
  start-page: 564
  year: 2009
  end-page: 572
  article-title: Automatic segmentation of newborn brain MRI
  publication-title: NeuroImage
– volume: 9
  start-page: 104
  year: 2005
  end-page: 110
  article-title: Imaging the developing brain: What have we learned about cognitive development?
  publication-title: Trends Cognit. Sci.
– start-page: 1
  year: 2011
  end-page: 16
  article-title: Efficient probabilistic and geometric anatomical mapping using particle mesh approximation on GPUs
  publication-title: Int. J. Biomed. Imaging
– volume: 10
  start-page: 740
  year: 2006
  end-page: 751
  article-title: Statistical representation of high‐dimensional deformation fields with application to statistically constrained 3D warping
  publication-title: Med. Image Anal.
– volume: 17
  start-page: 489
  year: 1999
  end-page: 499
  article-title: Affineinvariant image retrieval by correspondence matching of shapes
  publication-title: Image Vis. Comput.
– ident: e_1_2_6_25_1
  doi: 10.1016/j.neuroimage.2008.12.037
– ident: e_1_2_6_3_1
  doi: 10.1523/JNEUROSCI.3479‐08.2008
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.0407828102
– ident: e_1_2_6_54_1
  doi: 10.1016/j.neuroimage.2008.10.040
– ident: e_1_2_6_5_1
  doi: 10.1016/j.neuron.2010.08.040
– ident: e_1_2_6_4_1
  doi: 10.1016/j.tics.2005.01.011
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1467‐9868.2005.00503.x
– ident: e_1_2_6_16_1
  doi: 10.1016/S0361‐9230(00)00434‐2
– ident: e_1_2_6_27_1
  doi: 10.1016/j.media.2006.06.007
– ident: e_1_2_6_55_1
  doi: 10.1109/TMI.2011.2163944
– ident: e_1_2_6_20_1
  doi: 10.1007/978-3-642-15699-1_5
– ident: e_1_2_6_7_1
  doi: 10.1109/TMI.2004.834616
– ident: e_1_2_6_13_1
  doi: 10.1016/j.neuroimage.2013.03.021
– ident: e_1_2_6_51_1
  doi: 10.1016/j.neuroimage.2009.10.065
– ident: e_1_2_6_41_1
  doi: 10.1016/S1361‐8415(01)00036‐6
– ident: e_1_2_6_17_1
  doi: 10.1016/j.neuroimage.2009.04.068
– ident: e_1_2_6_2_1
  doi: 10.1093/cercor/bhs197
– volume-title: Presented at the Information Processing in Medical Imaging
  ident: e_1_2_6_34_1
– ident: e_1_2_6_23_1
  doi: 10.1109/TMI.2013.2265603
– ident: e_1_2_6_24_1
  doi: 10.1016/j.neuroimage.2011.03.050
– ident: e_1_2_6_31_1
  doi: 10.1155/2011/572187
– ident: e_1_2_6_6_1
  doi: 10.1371/journal.pone.0018746
– ident: e_1_2_6_9_1
  doi: 10.1109/TMI.2013.2269814
– ident: e_1_2_6_12_1
  doi: 10.1371/journal.pone.0044596
– ident: e_1_2_6_15_1
  doi: 10.1016/j.neuroimage.2010.07.025
– ident: e_1_2_6_8_1
  doi: 10.1016/j.media.2010.07.002
– ident: e_1_2_6_49_1
  doi: 10.1016/j.neuroimage.2013.08.008
– ident: e_1_2_6_36_1
  doi: 10.1007/BFb0056301
– ident: e_1_2_6_21_1
  doi: 10.1016/j.neuroimage.2013.11.040
– ident: e_1_2_6_22_1
  doi: 10.2214/ajr.150.4.889
– ident: e_1_2_6_42_1
  doi: 10.1016/j.neuroimage.2003.12.015
– ident: e_1_2_6_28_1
  doi: 10.1016/j.neuroimage.2009.02.043
– ident: e_1_2_6_35_1
  doi: 10.1109/taes.1974.307828
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: e_1_2_6_48_1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_6_52_1
  doi: 10.1109/34.24792
– ident: e_1_2_6_29_1
  doi: 10.1016/j.neuroimage.2009.04.055
– ident: e_1_2_6_53_1
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: e_1_2_6_45_1
  doi: 10.1109/JPROC.2010.2044470
– ident: e_1_2_6_33_1
  doi: 10.1016/S1361‐8415(01)80004‐9
– ident: e_1_2_6_10_1
  doi: 10.1016/s0262‐8856(98)00141‐3
– volume: 30
  start-page: 347
  issue: 2
  year: 1964
  ident: e_1_2_6_44_1
  article-title: Monte Carlo methods
  publication-title: Monographs on Applied Probability & Statistics
– ident: e_1_2_6_11_1
  doi: 10.1007/978-3-642-35428-1_7
– ident: e_1_2_6_39_1
  doi: 10.1109/42.668698
– ident: e_1_2_6_43_1
  doi: 10.1002/hbm.22233
– ident: e_1_2_6_40_1
  doi: 10.1007/978-3-642-23626-6_39
– volume-title: Presented at the 9th IEEE International Symposium on Biomedical Imaging (ISBI)
  ident: e_1_2_6_32_1
– ident: e_1_2_6_38_1
  doi: 10.1007/s12021‐012‐9164‐z
– volume-title: Presented at the IEEE 12th International Conference on Computer Vision
  ident: e_1_2_6_50_1
– ident: e_1_2_6_14_1
  doi: 10.1016/j.neuroimage.2007.07.067
– ident: e_1_2_6_18_1
  doi: 10.1523/JNEUROSCI.2106‐10.2011
– ident: e_1_2_6_46_1
  doi: 10.1126/science.287.5456.1273
– start-page: 905
  volume-title: Lecture Notes in Computer Science
  year: 2008
  ident: e_1_2_6_26_1
– ident: e_1_2_6_30_1
  doi: 10.1007/978-3-540-75759-7_16
– ident: e_1_2_6_37_1
  doi: 10.1109/tmi.2002.803111
– reference: 18044561 - Med Image Comput Comput Assist Interv. 2007;10(Pt 2):127-35
– reference: 20650319 - Neuroimage. 2011 Feb 1;54(3):1862-71
– reference: 11287130 - Brain Res Bull. 2001 Feb;54(3):255-66
– reference: 18982691 - Med Image Comput Comput Assist Interv. 2008;11(Pt 2):905-13
– reference: 21533194 - PLoS One. 2011;6(4):e18746
– reference: 19285145 - Neuroimage. 2009 Oct 1;47(4):1277-87
– reference: 16887376 - Med Image Anal. 2006 Oct;10(5):740-51
– reference: 15860588 - Proc Natl Acad Sci U S A. 2005 May 10;102(19):6978-83
– reference: 19409502 - Neuroimage. 2009 Aug 15;47(2):564-72
– reference: 11516708 - Med Image Anal. 2001 Jun;5(2):143-56
– reference: 15050575 - Neuroimage. 2004 Apr;21(4):1508-17
– reference: 9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97
– reference: 19398022 - Neuroimage. 2009 Aug 15;47(2):549-63
– reference: 17761438 - Neuroimage. 2007 Oct 15;38(1):95-113
– reference: 24291615 - Neuroimage. 2014 Apr 1;89:152-64
– reference: 23739795 - IEEE Trans Med Imaging. 2013 Jul;32(7):1153-90
– reference: 23523806 - Neuroimage. 2013 Aug 1;76:216-24
– reference: 22003714 - Med Image Comput Comput Assist Interv. 2011;14(Pt 3):313-21
– reference: 20688559 - Med Image Anal. 2011 Aug;15(4):622-39
– reference: 19878724 - Neuroimage. 2010 Feb 1;49(3):2225-33
– reference: 23846465 - IEEE Trans Med Imaging. 2013 Oct;32(10):1939-51
– reference: 15737818 - Trends Cogn Sci. 2005 Mar;9(3):104-10
– reference: 23968736 - Neuroimage. 2014 Jan 1;84:141-58
– reference: 2450448 - AJR Am J Roentgenol. 1988 Apr;150(4):889-96
– reference: 22772652 - Cereb Cortex. 2013 Sep;23(9):2100-17
– reference: 21827972 - IEEE Trans Med Imaging. 2012 Feb;31(2):153-63
– reference: 19020011 - J Neurosci. 2008 Nov 19;28(47):12176-82
– reference: 19041946 - Neuroimage. 2009 Mar;45(1 Suppl):S61-72
– reference: 23049751 - PLoS One. 2012;7(9):e44596
– reference: 21440646 - Neuroimage. 2011 Jun 15;56(4):1968-81
– reference: 15493695 - IEEE Trans Med Imaging. 2004 Oct;23(10):1276-91
– reference: 21941523 - Int J Biomed Imaging. 2011;2011:572187
– reference: 23283836 - Hum Brain Mapp. 2014 Mar;35(3):1044-60
– reference: 23055044 - Neuroinformatics. 2013 Apr;11(2):211-25
– reference: 20826305 - Neuron. 2010 Sep 9;67(5):728-34
– reference: 10678835 - Science. 2000 Feb 18;287(5456):1273-6
– reference: 12575879 - IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39
– reference: 19195496 - Neuroimage. 2009 Jul 1;46(3):786-802
– reference: 9873920 - Med Image Anal. 1996 Mar;1(1):35-51
– reference: 21228187 - J Neurosci. 2011 Jan 12;31(2):784-91
– reference: 17919930 - Neuroimage. 2008 Jan 1;39(1):348-58
SSID ssj0006350
Score 2.2065635
Snippet Purpose: To investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform...
To investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform accurate image...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4174
SubjectTerms Biological material, e.g. blood, urine; Haemocytometers
biomedical MRI
brain
Brain - anatomy & histology
Brain - growth & development
Clinical applications
correspondence detection
deformation
Dictionaries
Digital computing or data processing equipment or methods, specially adapted for specific applications
hierarchical and symmetric registration
Humans
Image data processing or generation, in general
image registration
Imaging, Three-Dimensional - methods
Infant
infant brain registration
Infant, Newborn
Involving electronic [emr] or nuclear [nmr] magnetic resonance, e.g. magnetic resonance imaging
iterative methods
Longitudinal Studies
Magnetic Resonance Imaging - methods
Magnetic Resonance Physics
Medical image contrast
medical image processing
Medical image segmentation
Medical magnetic resonance imaging
MRI: anatomic, functional, spectral, diffusion
Numerical approximation and analysis
paediatrics
Registration
Testing procedures
Three dimensional image processing
Trajectory models
Title Hierarchical and symmetric infant image registration by robust longitudinal‐example‐guided correspondence detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4922393
https://www.ncbi.nlm.nih.gov/pubmed/26133617
https://www.proquest.com/docview/1693721729
https://pubmed.ncbi.nlm.nih.gov/PMC4474954
Volume 42
WOSCitedRecordID wos000357686400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61W0BceJRXeFQGIcQlsImdh8UJAaseaFUhKu0tsh0bIu0m1WYD9MZP4DfyS5hxshGrgoTEKZEyjqzMwzPx-PsAniZlnhub6tBIgwUK2kSoU-pxd8rYyDrBufZkE9nxcT6fy5MdeLU5C9PjQ4w_3MgzfLwmB1d6YCGJqHE9eiFkTABeu7AXo92KCey9_TA7fT8GYlxL-xMoUtAmQjIAC-Hwl-Pg7eXoQo55sVXy9xTWr0Gz6_81-xtwbUg92eveVm7Cjq334crRsLm-D5d9N6hpb8HXw4rOJXualAVTdcna8-WSuLcMQ4tEZbBqiYGIEa3DBniX6XO2anTXrtmiIRakriTGrZ_ff9hvijCI8e5TV5W2ZMZTgpw1tSc0ZaVd-4aw-jaczt59fHMYDgwNocHFj4eJjXQiORcJlm2psCpy09SJKLZKY8nuhBQqi7nmGrMEkznpyrRUGEUw83ApV_wOTOqmtveA2VSaqSN8uMgKaXJlpnaqY6MtZVBJGcDzjaIKM8CXE4vGoujLmLyIiuGTBvBkFD3rMTv-JPR4o-0CPYq2SVRtm64tCJ4mI94uGcDdXvvja7De5ByTvgCyLbsYBQite_tJXX32qN1CZFiMigCeebv4-8yKoxO63P9XwQdwFbO4pO8hfgiT9aqzj-CS-bKu2tUB7Gbz_GBwjV9RARMx
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD6ss7r64mW91WsUEV-q00l6Cfgi6jDizLDILuxbSdLULcy0y3Sq7ps_wd_oL_GctFMcVkHwqYWelNKca3LyfQDPwixJjI20b6TBAgV1wtcR9bjnytjA5oJz7cgm4vk8OT6WBzvwenMWpsWH6BfcyDKcvyYDpwXpzsqpcz14KeSIELwuwK5ANQoHsPvu0_ho2ntiDKbtERQpaBch7JCFcPirfvB2PDqXZJ7vlfw9h3VBaHzt_z7_Olztkk_2ptWWG7Bjy33Ym3Xb6_twyfWDmvomfJ0UdDLZEaUsmCozVp8tl8S-ZRjqJE4HK5boihgRO2ygd5k-Y6tKN_WaLSriQWoy4tz6-f2H_aYIhRjvPjdFZjNmHCnIaVU6SlOW2bVrCStvwdH4_eHbid9xNPgGwx_3QxvoUHIuQizcImFVkA-jXAQjqzQW7bmQQsUjrrnGPMHEucyzKFPoRzD3yCOu-G0YlFVp7wKzkTTDnBDiAiukSZQZ2qEeGW0phwozD15sZio1HYA58Wgs0raQSdIg7X6pB0970dMWteNPQk82052iTdFGiSpt1dQpAdTExNwlPbjTTn__Gqw4Oce0z4N4SzF6AcLr3n5SFicOt1uIGMtR4cFzpxh__7J0dkCXe_8q-BguTw5n03T6Yf7xPlzBnC5sO4ofwGC9auxDuGi-rIt69aizkF87SRY5
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UVosvXuotXkcR8SV2szO5DPgi1qViuyxioW9hbrGB3eyy2ah98yf4G_0lnjPJBpcqCD4lkDNhyLnMOZkz3wfwPLZZZlyiQyMNFihoE6FOqMe9UMZFrhCca082kY7H2empnGzB6_VZmBYfov_hRp7h4zU5uFvYovNy6lyPXgk5JASvS7AjYpmgW-4cfBydHPWRGBfT9giKFLSLEHfIQjh8vx-8uR5dSDIv9kr-nsP6RWh0_f-mfwOudckne9Nay03YctUe7B532-t7cMX3g5r6Fnw9LOlksidKmTJVWVafz2bEvmUY2iSqg5UzDEWMiB3W0LtMn7PlXDf1ik3nxIPUWOLc-vn9h_umCIUY7z43pXWWGU8KsphXntKUWbfyLWHVbTgZvfv09jDsOBpCg8sfD2MX6VhyLmIs3BLhVFQMkkJEQ6c0Fu2FkEKlQ665xjzBpIUsbGIVxhHMPYqEK34Htqt55e4Bc4k0g4IQ4iInpMmUGbiBHhrtKIeKbQAv15rKTQdgTjwa07wtZLI8yrtPGsCzXnTRonb8SejpWt05-hRtlKjKzZs6J4CalJi7ZAB3W_X3r8GKk3NM-wJINwyjFyC87s0nVXnmcbuFSLEcFQG88Ibx95nlxxO63P9XwSewOzkY5Ufvxx8ewFVM6eK2ofghbK-WjXsEl82XVVkvH3cO8guoXxW0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+and+symmetric+infant+image+registration+by+robust+longitudinal-example-guided+correspondence+detection&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Wu%2C+Yao&rft.au=Wu%2C+Guorong&rft.au=Wang%2C+Li&rft.au=Munsell%2C+Brent+C&rft.date=2015-07-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=42&rft.issue=7&rft.spage=4174&rft_id=info:doi/10.1118%2F1.4922393&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon