Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance
Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh‐pe...
Saved in:
| Published in: | Advanced materials (Weinheim) Vol. 31; no. 14; pp. e1807071 - n/a |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
05.04.2019
|
| Subjects: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh‐performance GeTe‐based thermoelectric materials is reviewed with a focus on the crystal structures, phase transitions, resonant bondings, multiple valance bands, and phonon dispersions. These features diversify the degrees of freedom to tune the transport properties of electrons and phonons for GeTe. On the basis of the optimized carrier concentration, strategies of alignment of multiple valence bands and density‐of‐state resonant distortion are employed to further enhance the thermoelectric performance of GeTe‐based materials. To decrease the thermal conductivity, methods of strengthening intrinsic phonon–phonon interactions and introducing various lattice imperfections as scattering centers are highlighted. An overview of thermoelectric devices assembled from GeTe‐based thermoelectric materials is then presented. In conclusion, possible future directions for developing GeTe in thermoelectric applications are proposed. The achieved high thermoelectric performance in GeTe‐based thermoelectric materials with rationally established strategies can act as a reference for broader materials to tailor their thermoelectric performance.
Recent progress in GeTe thermoelectrics is reviewed with a focus on the diverse degrees of freedom to tailor thermoelectric properties. The strategies for enhancing power factors include optimizing carrier concentration, aligning multiple valence bands, density‐of‐state resonant distortion, and increasing band degeneracy by slight symmetry reduction. Decreasing the thermal conductivity can be achieved by intrinsically strengthening the phonon–phonon interactions and introducing planar vacancies. |
|---|---|
| AbstractList | Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh‐performance GeTe‐based thermoelectric materials is reviewed with a focus on the crystal structures, phase transitions, resonant bondings, multiple valance bands, and phonon dispersions. These features diversify the degrees of freedom to tune the transport properties of electrons and phonons for GeTe. On the basis of the optimized carrier concentration, strategies of alignment of multiple valence bands and density‐of‐state resonant distortion are employed to further enhance the thermoelectric performance of GeTe‐based materials. To decrease the thermal conductivity, methods of strengthening intrinsic phonon–phonon interactions and introducing various lattice imperfections as scattering centers are highlighted. An overview of thermoelectric devices assembled from GeTe‐based thermoelectric materials is then presented. In conclusion, possible future directions for developing GeTe in thermoelectric applications are proposed. The achieved high thermoelectric performance in GeTe‐based thermoelectric materials with rationally established strategies can act as a reference for broader materials to tailor their thermoelectric performance. Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh‐performance GeTe‐based thermoelectric materials is reviewed with a focus on the crystal structures, phase transitions, resonant bondings, multiple valance bands, and phonon dispersions. These features diversify the degrees of freedom to tune the transport properties of electrons and phonons for GeTe. On the basis of the optimized carrier concentration, strategies of alignment of multiple valence bands and density‐of‐state resonant distortion are employed to further enhance the thermoelectric performance of GeTe‐based materials. To decrease the thermal conductivity, methods of strengthening intrinsic phonon–phonon interactions and introducing various lattice imperfections as scattering centers are highlighted. An overview of thermoelectric devices assembled from GeTe‐based thermoelectric materials is then presented. In conclusion, possible future directions for developing GeTe in thermoelectric applications are proposed. The achieved high thermoelectric performance in GeTe‐based thermoelectric materials with rationally established strategies can act as a reference for broader materials to tailor their thermoelectric performance. Recent progress in GeTe thermoelectrics is reviewed with a focus on the diverse degrees of freedom to tailor thermoelectric properties. The strategies for enhancing power factors include optimizing carrier concentration, aligning multiple valence bands, density‐of‐state resonant distortion, and increasing band degeneracy by slight symmetry reduction. Decreasing the thermal conductivity can be achieved by intrinsically strengthening the phonon–phonon interactions and introducing planar vacancies. Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh-performance GeTe-based thermoelectric materials is reviewed with a focus on the crystal structures, phase transitions, resonant bondings, multiple valance bands, and phonon dispersions. These features diversify the degrees of freedom to tune the transport properties of electrons and phonons for GeTe. On the basis of the optimized carrier concentration, strategies of alignment of multiple valence bands and density-of-state resonant distortion are employed to further enhance the thermoelectric performance of GeTe-based materials. To decrease the thermal conductivity, methods of strengthening intrinsic phonon-phonon interactions and introducing various lattice imperfections as scattering centers are highlighted. An overview of thermoelectric devices assembled from GeTe-based thermoelectric materials is then presented. In conclusion, possible future directions for developing GeTe in thermoelectric applications are proposed. The achieved high thermoelectric performance in GeTe-based thermoelectric materials with rationally established strategies can act as a reference for broader materials to tailor their thermoelectric performance.Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh-performance GeTe-based thermoelectric materials is reviewed with a focus on the crystal structures, phase transitions, resonant bondings, multiple valance bands, and phonon dispersions. These features diversify the degrees of freedom to tune the transport properties of electrons and phonons for GeTe. On the basis of the optimized carrier concentration, strategies of alignment of multiple valence bands and density-of-state resonant distortion are employed to further enhance the thermoelectric performance of GeTe-based materials. To decrease the thermal conductivity, methods of strengthening intrinsic phonon-phonon interactions and introducing various lattice imperfections as scattering centers are highlighted. An overview of thermoelectric devices assembled from GeTe-based thermoelectric materials is then presented. In conclusion, possible future directions for developing GeTe in thermoelectric applications are proposed. The achieved high thermoelectric performance in GeTe-based thermoelectric materials with rationally established strategies can act as a reference for broader materials to tailor their thermoelectric performance. |
| Author | Hong, Min Chen, Zhi‐Gang Zou, Jin |
| Author_xml | – sequence: 1 givenname: Min surname: Hong fullname: Hong, Min organization: University of Queensland – sequence: 2 givenname: Jin surname: Zou fullname: Zou, Jin email: j.zou@uq.edu.au organization: University of Queensland – sequence: 3 givenname: Zhi‐Gang orcidid: 0000-0002-9309-7993 surname: Chen fullname: Chen, Zhi‐Gang email: zhigang.chen@usq.edu.au, zhigang.chen@uq.edu.au organization: University of Queensland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30756468$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1r3DAQhkVJSTZprj0WQS-9eDv6sGUdl2w-CgkJZAu9CVke7yrY1layE_Lv62WTFgKhp5nD87wM8x6Tgz70SMhnBnMGwL_burNzDqwEBYp9IDOWc5ZJ0PkBmYEWeaYLWR6R45QeAEAXUBySIwEqL2RRzsiv1QZjF7BFN0Tv6CWukD75YUOX_hFjQrrEdURMNDT0Ylrq0NEr--j7Nb1HN0as6f24xbjx6w29w9iE2Nne4SfysbFtwtOXeUJ-Xpyvzq6y69vLH2eL68xJJliW51JXYKERsi6lahrWKFFpWyuoeImCWaEFsMKVWlV5KRnXhShqXVcAyulanJBv-9xtDL9HTIPpfHLYtrbHMCbDOXCmpeB8Qr--QR_CGPvpuh3FFJRc5hP15YUaqw5rs42-s_HZvP5sAuQecDGkFLExzg928KEfovWtYWB21ZhdNeZvNZM2f6O9Jr8r6L3w5Ft8_g9tFsubxT_3D6Q0nsY |
| CitedBy_id | crossref_primary_10_1002_smll_202205624 crossref_primary_10_1080_10408436_2022_2053499 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1360_TB_2024_0793 crossref_primary_10_1002_adma_201904316 crossref_primary_10_1039_D0MH00954G crossref_primary_10_1021_jacs_4c04453 crossref_primary_10_1016_j_mtphys_2022_100682 crossref_primary_10_1021_jacs_5c05116 crossref_primary_10_3390_ma15020406 crossref_primary_10_1002_aenm_202102012 crossref_primary_10_1016_j_cej_2022_139269 crossref_primary_10_1002_inf2_12217 crossref_primary_10_1002_smll_202206439 crossref_primary_10_1016_j_mattod_2021_02_016 crossref_primary_10_1002_adfm_202307864 crossref_primary_10_1002_advs_202409494 crossref_primary_10_1002_adfm_202411054 crossref_primary_10_1002_adfm_202304512 crossref_primary_10_1007_s40843_021_1684_0 crossref_primary_10_1002_inf2_12057 crossref_primary_10_1016_j_intermet_2021_107118 crossref_primary_10_1016_j_cej_2023_146194 crossref_primary_10_1016_j_jssc_2022_123543 crossref_primary_10_1007_s00339_022_06261_x crossref_primary_10_1016_j_jallcom_2019_153522 crossref_primary_10_1063_5_0220462 crossref_primary_10_1002_adma_202500802 crossref_primary_10_1016_j_joule_2020_03_004 crossref_primary_10_1063_5_0244411 crossref_primary_10_1002_adfm_202510362 crossref_primary_10_1002_adma_201902765 crossref_primary_10_1016_j_jallcom_2019_05_238 crossref_primary_10_1515_ijmr_2021_8406 crossref_primary_10_1016_j_joule_2020_07_021 crossref_primary_10_1016_j_mtphys_2024_101524 crossref_primary_10_1016_j_mtphys_2025_101661 crossref_primary_10_1038_s41467_021_21042_5 crossref_primary_10_1002_adfm_202212421 crossref_primary_10_1002_smll_202408864 crossref_primary_10_1016_j_mtener_2024_101550 crossref_primary_10_1002_aenm_202203361 crossref_primary_10_1016_j_apsusc_2025_163245 crossref_primary_10_1016_j_jallcom_2020_155989 crossref_primary_10_1016_j_nanoen_2019_03_031 crossref_primary_10_1016_j_jallcom_2019_151747 crossref_primary_10_1016_j_mtphys_2020_100308 crossref_primary_10_1039_D4QI00451E crossref_primary_10_7566_JPSJ_94_024601 crossref_primary_10_1002_adma_202401878 crossref_primary_10_1002_smll_202312145 crossref_primary_10_1002_smll_202500333 crossref_primary_10_1039_D5TA04937G crossref_primary_10_3390_nano14080722 crossref_primary_10_3390_ma18143232 crossref_primary_10_1016_j_jallcom_2022_164267 crossref_primary_10_1088_1361_6463_ad0f5b crossref_primary_10_1039_D0SE01788D crossref_primary_10_1016_j_jallcom_2023_172574 crossref_primary_10_1039_D0EE01004A crossref_primary_10_1016_j_mattod_2019_11_010 crossref_primary_10_1038_s41467_021_25119_z crossref_primary_10_1016_j_jpcs_2022_110671 crossref_primary_10_1016_j_solidstatesciences_2025_107904 crossref_primary_10_1002_smll_202105923 crossref_primary_10_1002_adfm_202314499 crossref_primary_10_1007_s12598_024_02862_y crossref_primary_10_1111_jace_70171 crossref_primary_10_1016_j_cej_2023_145236 crossref_primary_10_1021_jacs_9b13272 crossref_primary_10_1088_1361_6463_acc9d0 crossref_primary_10_1016_j_cej_2022_137278 crossref_primary_10_1021_jacs_9b11405 crossref_primary_10_1039_D3NR04646J crossref_primary_10_1016_j_mtphys_2023_100993 crossref_primary_10_1039_D0EE01895C crossref_primary_10_1002_aenm_202201043 crossref_primary_10_1016_j_jallcom_2023_171136 crossref_primary_10_4150_jpm_2024_00395 crossref_primary_10_1002_adfm_202109790 crossref_primary_10_1002_adfm_201904862 crossref_primary_10_1002_adfm_201910059 crossref_primary_10_1016_j_mtphys_2022_100608 crossref_primary_10_1002_adfm_202404021 crossref_primary_10_1021_acsanm_5c02186 crossref_primary_10_54227_mlab_20220048 crossref_primary_10_1002_advs_201902409 crossref_primary_10_1063_5_0040808 crossref_primary_10_1002_smll_202311153 crossref_primary_10_1016_j_cej_2019_04_081 crossref_primary_10_1002_advs_201902923 crossref_primary_10_1002_adma_202110518 crossref_primary_10_1016_j_mtphys_2023_101211 crossref_primary_10_1002_aenm_202103385 crossref_primary_10_1016_j_mtphys_2021_100484 crossref_primary_10_1039_D4EE03090G crossref_primary_10_1039_D1RA04270J crossref_primary_10_1016_j_cej_2021_132275 crossref_primary_10_1002_aenm_202103779 crossref_primary_10_1063_5_0128259 crossref_primary_10_1038_s41598_025_92809_9 crossref_primary_10_1002_aenm_202100544 crossref_primary_10_1016_j_nanoen_2020_105649 crossref_primary_10_1016_j_nanoen_2022_107147 crossref_primary_10_1016_j_mtphys_2021_100519 crossref_primary_10_1002_adma_202102575 crossref_primary_10_1016_j_nanoen_2024_109723 crossref_primary_10_1016_j_cej_2025_161275 crossref_primary_10_1016_j_joule_2024_101818 crossref_primary_10_1039_D1NR06962D crossref_primary_10_3390_mi15030380 crossref_primary_10_1007_s10854_025_15119_w crossref_primary_10_1016_j_cej_2023_146428 crossref_primary_10_1038_s41467_024_50175_6 crossref_primary_10_1016_j_matchemphys_2024_129520 crossref_primary_10_1002_adma_202208272 crossref_primary_10_1016_j_scriptamat_2023_115313 crossref_primary_10_1016_j_mtphys_2025_101863 crossref_primary_10_1016_j_jtice_2023_104890 crossref_primary_10_1016_j_mtphys_2020_100239 crossref_primary_10_1016_j_mssp_2020_104955 crossref_primary_10_3390_mi13030476 crossref_primary_10_1016_j_jallcom_2020_157727 crossref_primary_10_1038_s41524_023_01148_8 crossref_primary_10_1002_adfm_202213040 crossref_primary_10_1038_s41467_022_33330_9 crossref_primary_10_1038_s41598_019_43911_2 crossref_primary_10_1002_cey2_689 crossref_primary_10_1002_adfm_202208579 crossref_primary_10_1002_aenm_202304029 crossref_primary_10_1063_5_0063080 crossref_primary_10_1002_adma_202102721 crossref_primary_10_1007_s12598_022_02036_8 crossref_primary_10_1002_aenm_202000367 crossref_primary_10_1002_adfm_202403498 crossref_primary_10_1002_smll_202310209 crossref_primary_10_1002_advs_202506612 crossref_primary_10_1002_adfm_202107433 crossref_primary_10_1016_j_susmat_2020_e00183 crossref_primary_10_1002_adma_202505601 crossref_primary_10_1016_j_matpr_2020_03_044 crossref_primary_10_1016_j_cej_2022_136131 crossref_primary_10_1016_j_ceramint_2022_04_195 crossref_primary_10_1039_C9NR09331A crossref_primary_10_1016_j_ceramint_2021_07_243 crossref_primary_10_1021_jacs_0c03696 crossref_primary_10_1016_j_actamat_2023_118926 crossref_primary_10_1021_acsaelm_5c00720 crossref_primary_10_54227_mlab_20230032 crossref_primary_10_1002_aenm_202400623 crossref_primary_10_1016_j_actamat_2022_118565 crossref_primary_10_1039_D4SC06615D crossref_primary_10_3390_en17215358 crossref_primary_10_1002_adfm_201903841 crossref_primary_10_1021_acs_chemmater_5c01120 crossref_primary_10_1016_j_jallcom_2024_177069 crossref_primary_10_1016_j_jssc_2024_124617 crossref_primary_10_1002_pssr_202000482 crossref_primary_10_1016_j_jallcom_2022_165965 crossref_primary_10_1016_j_physe_2025_116359 crossref_primary_10_1088_0256_307X_38_12_127201 crossref_primary_10_1016_j_mtphys_2023_101081 crossref_primary_10_1016_j_carbon_2019_04_007 crossref_primary_10_3390_electronics8121514 crossref_primary_10_1142_S0217984924502245 crossref_primary_10_1002_adma_202100163 crossref_primary_10_1002_cnma_202100033 crossref_primary_10_1016_j_mtphys_2021_100507 crossref_primary_10_1016_j_commatsci_2024_113160 crossref_primary_10_1016_j_jallcom_2020_157984 crossref_primary_10_3390_ma12223783 |
| Cites_doi | 10.1016/j.nanoen.2015.03.034 10.1038/nature10593 10.1016/j.nanoen.2018.06.030 10.1007/s11664-012-2249-5 10.1073/pnas.93.15.7436 10.1021/acs.chemmater.5b02784 10.1016/j.ensm.2017.08.014 10.1002/advs.201600004 10.1103/PhysRevB.79.075204 10.1002/adma.201801787 10.1002/adma.201203199 10.1021/nl8026795 10.1002/aenm.201801837 10.1021/acs.chemmater.5b03434 10.1002/adma.201801072 10.1039/C4EE03157A 10.1073/pnas.1111419109 10.1038/ncomms9144 10.1021/acs.chemrev.6b00255 10.1021/jacs.6b07010 10.1038/nature13184 10.1039/C5RA18369C 10.1039/C1EE02612G 10.1002/adma.201705617 10.1021/jacs.5b00837 10.1002/adma.201202919 10.1038/am.2016.203 10.1021/acsenergylett.8b00137 10.1039/C5TC04339E 10.1021/acsami.5b07596 10.1039/C3EE43099E 10.1063/1.4752110 10.1039/C7EE02530K 10.1039/C4CP02399D 10.1002/anie.200900598 10.1021/ja504896a 10.1002/pssb.201248412 10.1038/ncomms13828 10.1007/s11664-015-4003-2 10.1021/acs.chemmater.8b03732 10.1088/0953-8984/21/39/395502 10.1126/science.aad3749 10.1021/ja307910u 10.1038/s41598-017-01154-z 10.1038/npjcompumats.2015.1 10.1038/nmat2090 10.1038/nmat1807 10.1038/nmat4430 10.1021/jacs.8b09375 10.1039/C7EE03062B 10.1021/ja500860m 10.1103/PhysRevB.84.125207 10.1016/j.pmatsci.2018.04.005 10.1038/s41467-018-04660-4 10.1016/j.mser.2009.10.001 10.1039/C4DT03425B 10.1038/ncomms12167 10.1016/j.nanoen.2016.12.026 10.1021/acs.chemmater.6b04066 10.1088/0034-4885/51/4/001 10.1002/adfm.201703278 10.1038/nmat2009 10.1002/aenm.201200970 10.1021/jp304455z 10.1007/s11664-012-2316-y 10.1063/1.3027060 10.1038/nmat2330 10.1039/C3EE43438A 10.1021/ja403134b 10.1038/nenergy.2016.153 10.1021/nl504624r 10.1002/aenm.201502423 10.1038/am.2017.8 10.1126/science.285.5428.703 10.1039/C6TC03789E 10.1021/cm501188c 10.1021/jacs.5b07284 10.1063/1.3097026 10.1063/1.3502547 10.1021/cg4009569 10.1002/adma.201802000 10.1021/ic400381g 10.1039/C7TA02677C 10.1021/acs.chemmater.6b01291 10.1002/advs.201600196 10.1016/j.chempr.2018.04.013 10.1103/PhysRevB.91.144304 10.1002/adma.201705942 10.1016/0022-3697(67)90323-X 10.1021/acsnano.6b01156 10.1088/0022-3719/13/26/009 10.1103/PhysRevB.36.6631 10.1002/aenm.201401977 10.1117/12.2057661 10.1088/0953-8984/27/1/015501 10.1021/ic400947p 10.1002/aenm.201702333 10.1103/PhysRevLett.59.570 10.1557/mrs2006.49 10.1039/c2ee21536e 10.1063/1.1713126 10.1039/C5QI00230C 10.1039/C6EE00322B 10.1039/C0JM02755C 10.1038/515484a 10.1002/advs.201801514 10.1038/am.2014.39 10.1002/adfm.201001307 10.1103/PhysRevB.94.161201 10.1021/acsomega.7b01364 10.1002/aelm.201500025 10.1103/PhysRevB.91.054110 10.1088/0022-3727/39/4/021 10.1002/advs.201700341 10.1002/anie.201508381 10.1063/1.4983404 10.1088/0022-3727/40/2/035 10.1002/aenm.201701797 10.1002/adma.201606768 10.1021/jacs.8b12624 10.1021/ja507945h 10.1002/aenm.201500272 10.1039/C5CP07620J 10.1103/PhysRevB.73.045210 10.1038/nature09996 10.1002/adma.200600527 10.1002/adma.201605884 10.1016/j.enconman.2017.02.070 10.1103/PhysRevB.81.115106 10.1039/C5NR04771D 10.1038/ncomms5515 10.1021/jacs.8b09147 10.1002/aenm.201800056 10.1039/C4EE01463D 10.1039/C6NR00719H 10.1039/C4CP02091J 10.1103/PhysRevB.74.125202 10.1016/j.nanoen.2015.12.009 10.1002/admt.201700256 10.1039/b822664b 10.1039/C4TA00539B 10.1557/mrs2006.44 10.1038/ncomms4525 10.1038/nmat1080 10.1021/nl303449x 10.1021/acs.chemmater.5b03708 10.1039/C1EE02465E 10.1073/pnas.1305735110 10.1073/pnas.1608794113 10.1038/nmat3035 10.1016/j.pnsc.2012.11.011 10.1021/acsami.7b06083 10.1073/pnas.1424388112 10.1038/nmat2226 10.1126/science.aak9997 10.1088/1674-1056/27/4/048403 10.1021/nl202935k 10.1002/adfm.201300663 10.1038/ncomms8584 10.1002/adma.201803777 10.1039/c3ee42187b 10.1016/j.nanoen.2018.03.058 10.1021/jacs.7b13611 10.1007/BF00550400 10.1002/aenm.201600498 10.1039/C4EE03042G 10.1002/adfm.201103049 10.1038/nnano.2008.417 10.1039/C5EE02600H 10.1016/j.mattod.2013.05.004 10.1002/aenm.201500411 10.1039/C6TC02501C 10.1002/anie.201802681 10.1126/science.1159725 10.1080/00207215908937186 10.1002/adma.201201565 10.1016/j.joule.2018.02.016 10.1103/PhysRevB.2.1216 10.1063/1.4905922 10.1002/adma.201605887 10.1103/PhysRevB.91.094306 10.1021/jacs.7b05143 10.1007/s11664-010-1435-6 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.201807071 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 30756468 10_1002_adma_201807071 ADMA201807071 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: USQ – fundername: Australian Research Council |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4131-5549b0a0f34d847ff1f73b9ad70b28e31a393016c897b584129636d9db007c9d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 257 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467974100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Jul 10 18:43:40 EDT 2025 Sun Nov 30 04:27:26 EST 2025 Thu Apr 03 07:10:11 EDT 2025 Tue Nov 18 22:11:13 EST 2025 Sat Nov 29 07:19:56 EST 2025 Wed Jan 22 16:36:35 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | phonon scatterings phase transitions GeTe thermoelectrics resonant bonding multiple valence bands |
| Language | English |
| License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4131-5549b0a0f34d847ff1f73b9ad70b28e31a393016c897b584129636d9db007c9d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-9309-7993 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201807071 |
| PMID | 30756468 |
| PQID | 2201708245 |
| PQPubID | 2045203 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_2202194322 proquest_journals_2201708245 pubmed_primary_30756468 crossref_citationtrail_10_1002_adma_201807071 crossref_primary_10_1002_adma_201807071 wiley_primary_10_1002_adma_201807071_ADMA201807071 |
| PublicationCentury | 2000 |
| PublicationDate | April 5, 2019 |
| PublicationDateYYYYMMDD | 2019-04-05 |
| PublicationDate_xml | – month: 04 year: 2019 text: April 5, 2019 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2011; 479 1987; 36 2013; 3 2006; 31 2006; 39 1999; 285 1976 1967; 28 2014; 26 2004; 3 2012; 12 2013; 6 2014; 136 2018; 48 1959; 7 2011; 473 2018; 9 2018; 8 2018; 3 2018; 2 2018; 5 2012; 134 2018; 4 2015; 137 2009; 94 2013; 52 2014; 16 2007; 6 2018; 30 2013; 110 2015; 91 1964; 35 2012; 24 2012; 22 2016; 45 2007; 19 2012; 101 2019; 31 2011; 84 2016; 10 1996; 93 2016; 94 2016; 18 2018; 27 2017; 139 1987; 59 2012; 109 2016; 4 2016; 6 2009; 79 2016; 7 2016; 1 2016; 3 2015; 112 2016; 20 2017; 140 2016; 28 2018; 11 2018; 10 2012; 116 2018; 97 2016; 8 2016; 9 2017; 5 2017; 7 2017; 8 2006; 74 2017; 2 2013; 25 2017; 4 2006; 73 2013; 23 2008; 7 2008; 8 2011; 10 2015; 106 2017; 357 2017; 9 2010; 63 2009; 48 1970; 2 2010; 67 2014; 5 2013; 16 2014; 2 2013; 13 2017; 32 1969; 4 2015; 44 2016; 113 2011; 21 2014; 9115 2016; 116 2014; 7 2014; 6 2016; 351 2015; 13 2014; 515 2015; 1 2015; 15 2015; 14 2015; 6 2015; 5 2018; 140 2009; 21 2017; 27 2011; 40 2013; 42 2007 2017; 29 1988; 51 2008; 321 2010; 81 2015; 9 2019; 141 2015; 8 2015; 7 2008; 93 2016; 55 2015; 27 2014; 508 1980; 13 2017; 10 2013; 135 2016; 138 2013; 250 2018; 50 2007; 40 2009; 4 2009; 2 2012; 5 2018; 57 e_1_2_12_6_1 e_1_2_12_130_1 e_1_2_12_172_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_157_1 e_1_2_12_138_1 e_1_2_12_115_1 e_1_2_12_153_1 e_1_2_12_134_1 e_1_2_12_176_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 Irkhin V. I. U. (e_1_2_12_158_1) 2007 e_1_2_12_81_1 e_1_2_12_161_1 e_1_2_12_184_1 e_1_2_12_180_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_146_1 e_1_2_12_169_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_142_1 e_1_2_12_165_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_139_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_152_1 e_1_2_12_171_1 Ashcroft N. W. (e_1_2_12_119_1) 1976 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_137_1 e_1_2_12_179_1 e_1_2_12_114_1 e_1_2_12_133_1 e_1_2_12_156_1 e_1_2_12_175_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_160_1 e_1_2_12_141_1 e_1_2_12_183_1 e_1_2_12_122_1 e_1_2_12_168_1 e_1_2_12_29_1 e_1_2_12_149_1 e_1_2_12_126_1 e_1_2_12_164_1 e_1_2_12_103_1 e_1_2_12_145_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_174_1 e_1_2_12_151_1 e_1_2_12_19_1 e_1_2_12_170_1 e_1_2_12_38_1 e_1_2_12_136_1 e_1_2_12_159_1 e_1_2_12_132_1 e_1_2_12_178_1 e_1_2_12_113_1 e_1_2_12_155_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_140_1 e_1_2_12_163_1 e_1_2_12_182_1 e_1_2_12_49_1 e_1_2_12_121_1 e_1_2_12_148_1 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_144_1 e_1_2_12_167_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_150_1 e_1_2_12_173_1 e_1_2_12_5_1 e_1_2_12_1_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_39_1 e_1_2_12_116_1 e_1_2_12_131_1 e_1_2_12_154_1 e_1_2_12_177_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_185_1 e_1_2_12_162_1 e_1_2_12_181_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_147_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_143_1 e_1_2_12_124_1 e_1_2_12_166_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
| References_xml | – volume: 30 start-page: 1705617 year: 2018 publication-title: Adv. Mater. – volume: 473 start-page: 66 year: 2011 publication-title: Nature – volume: 94 start-page: 102111 year: 2009 publication-title: Appl. Phys. Lett. – volume: 138 start-page: 13647 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1401977 year: 2015 publication-title: Adv. Energy Mater. – volume: 91 start-page: 144304 year: 2015 publication-title: Phys. Rev. B – volume: 14 start-page: 1223 year: 2015 publication-title: Nat. Mater. – volume: 9 start-page: 2090 year: 2016 publication-title: Energy Environ. Sci. – volume: 2 start-page: 976 year: 2018 publication-title: Joule – volume: 16 start-page: 20120 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: 1349 year: 2015 publication-title: Nano Lett. – volume: 3 start-page: 164 year: 2004 publication-title: Nat. Mater. – volume: 91 start-page: 094306 year: 2015 publication-title: Phys. Rev. B – volume: 1 start-page: 15001 year: 2015 publication-title: npj Comput. Mater. – volume: 8 start-page: 1701797 year: 2018 publication-title: Adv. Energy Mater. – volume: 8 start-page: 1801837 year: 2018 publication-title: Adv. Energy Mater. – volume: 28 start-page: 520 year: 1967 publication-title: J. Phys. Chem. Solids – volume: 74 start-page: 125202 year: 2006 publication-title: Phys. Rev. B – volume: 26 start-page: 3322 year: 2014 publication-title: Chem. Mater. – volume: 57 start-page: 8037 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 4440 year: 2012 publication-title: Adv. Mater. – volume: 51 start-page: 459 year: 1988 publication-title: Rep. Prog. Phys. – volume: 5 start-page: 1500272 year: 2015 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1500411 year: 2015 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1700341 year: 2017 publication-title: Adv. Sci. – volume: 27 start-page: 6708 year: 2015 publication-title: Chem. Mater. – volume: 93 start-page: 7436 year: 1996 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 824 year: 2007 publication-title: Nat. Mater. – volume: 4 start-page: 939 year: 2018 publication-title: Chem – volume: 6 start-page: 3346 year: 2013 publication-title: Energy Environ. Sci. – volume: 40 start-page: 566 year: 2007 publication-title: J. Phys. D: Appl. Phys. – volume: 351 start-page: 141 year: 2016 publication-title: Science – volume: 32 start-page: 174 year: 2017 publication-title: Nano Energy – volume: 137 start-page: 5100 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 5123 year: 2013 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 2420 year: 2017 publication-title: Energy Environ. Sci. – volume: 30 start-page: 7355 year: 2018 publication-title: Chem. Mater. – volume: 30 start-page: 1705942 year: 2018 publication-title: Adv. Mater. – volume: 55 start-page: 6826 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 9192 year: 2017 publication-title: ACS Omega – volume: 10 start-page: 4719 year: 2016 publication-title: ACS Nano – volume: 5 start-page: 10713 year: 2017 publication-title: J. Mater. Chem. A – volume: 140 start-page: 15883 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 17731 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 20741 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 52 year: 1959 publication-title: J. Electron. Control – volume: 8 start-page: 216 year: 2015 publication-title: Energy Environ. Sci. – volume: 6 start-page: 7584 year: 2015 publication-title: Nat. Commun. – volume: 36 start-page: 6631 year: 1987 publication-title: Phys. Rev. B – volume: 5 start-page: 7963 year: 2012 publication-title: Energy Environ. Sci. – volume: 1 start-page: 16153 year: 2016 publication-title: Nat. Energy – year: 2007 – volume: 135 start-page: 7364 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 13261 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 22612 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 24 start-page: 6125 year: 2012 publication-title: Adv. Mater. – volume: 29 start-page: 1605887 year: 2017 publication-title: Adv. Mater. – volume: 39 start-page: 740 year: 2006 publication-title: J. Phys. D: Appl. Phys. – volume: 2 start-page: 466 year: 2009 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1600004 year: 2016 publication-title: Adv. Sci. – volume: 11 start-page: 311 year: 2018 publication-title: Energy Environ. Sci. – volume: 2 start-page: 1216 year: 1970 publication-title: Phys. Rev. B – volume: 93 start-page: 193121 year: 2008 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 267 year: 2015 publication-title: Energy Environ. Sci. – volume: 9115 start-page: 911507 year: 2014 publication-title: Proc. SPIE. – volume: 16 start-page: 166 year: 2013 publication-title: Mater. Today – volume: 10 start-page: 614 year: 2011 publication-title: Nat. Mater. – volume: 140 start-page: 2673 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 125 year: 2016 publication-title: Inorg. Chem. Front. – volume: 30 start-page: 1802000 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: e343 year: 2017 publication-title: NPG Asia Mater. – volume: 21 start-page: 395502 year: 2009 publication-title: J. Phys.: Condens. Matter – volume: 52 start-page: 5479 year: 2013 publication-title: Inorg. Chem. – volume: 27 start-page: 015501 year: 2015 publication-title: J. Phys.: Condens. Matter – volume: 42 start-page: 1340 year: 2013 publication-title: J. Electron. Mater. – volume: 30 start-page: 1803777 year: 2018 publication-title: Adv. Mater. – volume: 285 start-page: 703 year: 1999 publication-title: Science – volume: 136 start-page: 7006 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 626 year: 2015 publication-title: Nano Energy – volume: 515 start-page: 484 year: 2014 publication-title: Nature – volume: 7 start-page: 16237 year: 2015 publication-title: Nanoscale – volume: 7 start-page: 972 year: 2008 publication-title: Nat. Mater. – volume: 4 start-page: 235 year: 2009 publication-title: Nat. Nanotechnol. – volume: 97 start-page: 283 year: 2018 publication-title: Prog. Mater. Sci. – volume: 31 start-page: 188 year: 2006 publication-title: MRS Bull. – volume: 59 start-page: 570 year: 1987 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 815 year: 2013 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1605884 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 7478 year: 2014 publication-title: J. Mater. Chem. A – volume: 45 start-page: 1296 year: 2016 publication-title: J. Electron. Mater. – volume: 12 start-page: 5979 year: 2012 publication-title: Nano Lett. – volume: 13 start-page: 4855 year: 1980 publication-title: J. Phys. C: Solid State Phys. – volume: 48 start-page: 189 year: 2018 publication-title: Nano Energy – volume: 22 start-page: 535 year: 2012 publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 31 start-page: 1801072 year: 2019 publication-title: Adv. Mater. – volume: 8 start-page: 983 year: 2015 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1502423 year: 2016 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1600196 year: 2016 publication-title: Adv. Sci. – volume: 63 start-page: 38 year: 2010 publication-title: Phys. Today – volume: 141 start-page: 1742 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 8616 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 1702333 year: 2018 publication-title: Adv. Energy Mater. – volume: 140 start-page: 16190 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 530 year: 2015 publication-title: Energy Environ. Sci. – volume: 1 start-page: 1500025 year: 2015 publication-title: Adv. Electron. Mater. – volume: 44 start-page: 2835 year: 2015 publication-title: Dalton Trans. – volume: 109 start-page: 9705 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 250 start-page: 1300 year: 2013 publication-title: Phys. Status Solidi B – volume: 35 start-page: 2899 year: 1964 publication-title: J. Appl. Phys. – volume: 27 start-page: 7171 year: 2015 publication-title: Chem. Mater. – volume: 73 start-page: 045210 year: 2006 publication-title: Phys. Rev. B – volume: 67 start-page: 19 year: 2010 publication-title: Mater. Sci. Eng., R – volume: 20 start-page: 144 year: 2016 publication-title: Nano Energy – volume: 7 start-page: 955 year: 2017 publication-title: Sci. Rep. – volume: 5 start-page: 5510 year: 2012 publication-title: Energy Environ. Sci. – volume: 5 start-page: 4515 year: 2014 publication-title: Nat. Commun. – volume: 25 start-page: 509 year: 2013 publication-title: Adv. Mater. – volume: 106 start-page: 022112 year: 2015 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 13828 year: 2017 publication-title: Nat. Commun. – volume: 30 start-page: 1801787 year: 2018 publication-title: Adv. Mater. – volume: 5 start-page: 91974 year: 2015 publication-title: RSC Adv. – volume: 4 start-page: 10011 year: 2016 publication-title: J. Mater. Chem. C – volume: 4 start-page: 313 year: 1969 publication-title: J. Mater. Sci. – volume: 116 start-page: 12123 year: 2016 publication-title: Chem. Rev. – volume: 5 start-page: 5246 year: 2012 publication-title: Energy Environ. Sci. – volume: 9 start-page: e353 year: 2017 publication-title: NPG Asia Mater. – volume: 29 start-page: 1606768 year: 2017 publication-title: Adv. Mater. – volume: 19 start-page: 1043 year: 2007 publication-title: Adv. Mater. – volume: 136 start-page: 13902 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 705 year: 2018 publication-title: ACS Energy Lett. – volume: 140 start-page: 167 year: 2017 publication-title: Energy Convers. Manage. – volume: 52 start-page: 8183 year: 2013 publication-title: Inorg. Chem. – volume: 21 start-page: 4037 year: 2011 publication-title: J. Mater. Chem. – volume: 7 start-page: 23694 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 3525 year: 2014 publication-title: Nat. Commun. – volume: 116 start-page: 15801 year: 2012 publication-title: J. Phys. Chem. C – volume: 13 start-page: 4796 year: 2013 publication-title: Cryst. Growth Des. – volume: 321 start-page: 554 year: 2008 publication-title: Science – volume: 28 start-page: 4628 year: 2016 publication-title: Chem. Mater. – volume: 94 start-page: 161201 year: 2016 publication-title: Phys. Rev. B – year: 1976 – volume: 508 start-page: 373 year: 2014 publication-title: Nature – volume: 6 start-page: 1600498 year: 2016 publication-title: Adv. Energy Mater. – volume: 101 start-page: 113902 year: 2012 publication-title: Appl. Phys. Lett. – volume: 79 start-page: 075204 year: 2009 publication-title: Phys. Rev. B – volume: 27 start-page: 048403 year: 2018 publication-title: Chin. Phys. B – volume: 4 start-page: 7520 year: 2016 publication-title: J. Mater. Chem. C – volume: 6 start-page: 122 year: 2007 publication-title: Nat. Mater. – volume: 112 start-page: 3269 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 4414 year: 2016 publication-title: J. Mater. Chem. C – volume: 27 start-page: 7801 year: 2015 publication-title: Chem. Mater. – volume: 136 start-page: 11412 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8144 year: 2015 publication-title: Nat. Commun. – volume: 22 start-page: 2766 year: 2012 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 56 year: 2012 publication-title: Nano Lett. – volume: 7 start-page: 653 year: 2008 publication-title: Nat. Mater. – volume: 7 start-page: 804 year: 2014 publication-title: Energy Environ. Sci. – volume: 40 start-page: 533 year: 2011 publication-title: J. Electron. Mater. – volume: 10 start-page: 130 year: 2018 publication-title: Energy Storage Mater. – volume: 7 start-page: 251 year: 2014 publication-title: Energy Environ. Sci. – volume: 7 start-page: 105 year: 2008 publication-title: Nat. Mater. – volume: 9 start-page: 2224 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 4670 year: 2008 publication-title: Nano Lett. – volume: 50 start-page: 785 year: 2018 publication-title: Nano Energy – volume: 8 start-page: 1800056 year: 2018 publication-title: Adv. Energy Mater. – volume: 91 start-page: 054110 year: 2015 publication-title: Phys. Rev. B – volume: 139 start-page: 9382 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1703278 year: 2017 publication-title: Adv. Funct. Mater. – volume: 137 start-page: 11507 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 12167 year: 2016 publication-title: Nat. Commun. – volume: 81 start-page: 115106 year: 2010 publication-title: Phys. Rev. B – volume: 84 start-page: 125207 year: 2011 publication-title: Phys. Rev. B – volume: 357 start-page: 1369 year: 2017 publication-title: Science – volume: 5 start-page: 1801514 year: 2018 publication-title: Adv. Sci. – volume: 8 start-page: 8681 year: 2016 publication-title: Nanoscale – volume: 42 start-page: 1542 year: 2013 publication-title: J. Electron. Mater. – volume: 18 start-page: 7141 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 29 start-page: 605 year: 2017 publication-title: Chem. Mater. – volume: 21 start-page: 441 year: 2011 publication-title: Adv. Funct. Mater. – volume: 479 start-page: 380 year: 2011 publication-title: Nature – volume: 113 start-page: E4125 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 056103 year: 2017 publication-title: APL Mater. – volume: 31 start-page: 224 year: 2006 publication-title: MRS Bull. – volume: 6 start-page: e108 year: 2014 publication-title: NPG Asia Mater. – volume: 3 start-page: 1700256 year: 2018 publication-title: Adv. Mater. Technol. – ident: e_1_2_12_50_1 doi: 10.1016/j.nanoen.2015.03.034 – ident: e_1_2_12_180_1 doi: 10.1038/nature10593 – ident: e_1_2_12_47_1 doi: 10.1016/j.nanoen.2018.06.030 – ident: e_1_2_12_74_1 doi: 10.1007/s11664-012-2249-5 – ident: e_1_2_12_137_1 doi: 10.1073/pnas.93.15.7436 – ident: e_1_2_12_68_1 doi: 10.1021/acs.chemmater.5b02784 – ident: e_1_2_12_40_1 doi: 10.1016/j.ensm.2017.08.014 – ident: e_1_2_12_56_1 doi: 10.1002/advs.201600004 – ident: e_1_2_12_106_1 doi: 10.1103/PhysRevB.79.075204 – ident: e_1_2_12_87_1 doi: 10.1002/adma.201801787 – ident: e_1_2_12_138_1 doi: 10.1002/adma.201203199 – ident: e_1_2_12_71_1 doi: 10.1021/nl8026795 – ident: e_1_2_12_92_1 doi: 10.1002/aenm.201801837 – ident: e_1_2_12_86_1 doi: 10.1021/acs.chemmater.5b03434 – ident: e_1_2_12_11_1 doi: 10.1002/adma.201801072 – ident: e_1_2_12_21_1 doi: 10.1039/C4EE03157A – ident: e_1_2_12_171_1 doi: 10.1073/pnas.1111419109 – ident: e_1_2_12_73_1 doi: 10.1038/ncomms9144 – ident: e_1_2_12_132_1 doi: 10.1021/acs.chemrev.6b00255 – ident: e_1_2_12_82_1 doi: 10.1021/jacs.6b07010 – ident: e_1_2_12_80_1 doi: 10.1038/nature13184 – ident: e_1_2_12_125_1 doi: 10.1039/C5RA18369C – ident: e_1_2_12_159_1 doi: 10.1039/C1EE02612G – ident: e_1_2_12_36_1 doi: 10.1002/adma.201705617 – ident: e_1_2_12_75_1 doi: 10.1021/jacs.5b00837 – ident: e_1_2_12_130_1 doi: 10.1002/adma.201202919 – ident: e_1_2_12_142_1 doi: 10.1038/am.2016.203 – ident: e_1_2_12_163_1 doi: 10.1021/acsenergylett.8b00137 – ident: e_1_2_12_134_1 doi: 10.1039/C5TC04339E – ident: e_1_2_12_54_1 doi: 10.1021/acsami.5b07596 – ident: e_1_2_12_131_1 doi: 10.1039/C3EE43099E – ident: e_1_2_12_57_1 doi: 10.1063/1.4752110 – ident: e_1_2_12_78_1 doi: 10.1039/C7EE02530K – ident: e_1_2_12_102_1 doi: 10.1039/C4CP02399D – ident: e_1_2_12_29_1 doi: 10.1002/anie.200900598 – ident: e_1_2_12_98_1 doi: 10.1021/ja504896a – ident: e_1_2_12_103_1 doi: 10.1002/pssb.201248412 – ident: e_1_2_12_174_1 doi: 10.1038/ncomms13828 – ident: e_1_2_12_59_1 doi: 10.1007/s11664-015-4003-2 – ident: e_1_2_12_81_1 doi: 10.1021/acs.chemmater.8b03732 – ident: e_1_2_12_122_1 doi: 10.1088/0953-8984/21/39/395502 – ident: e_1_2_12_79_1 doi: 10.1126/science.aad3749 – ident: e_1_2_12_168_1 doi: 10.1021/ja307910u – ident: e_1_2_12_107_1 doi: 10.1038/s41598-017-01154-z – ident: e_1_2_12_127_1 doi: 10.1038/npjcompumats.2015.1 – ident: e_1_2_12_1_1 doi: 10.1038/nmat2090 – ident: e_1_2_12_150_1 doi: 10.1038/nmat1807 – ident: e_1_2_12_26_1 doi: 10.1038/nmat4430 – ident: e_1_2_12_101_1 doi: 10.1021/jacs.8b09375 – ident: e_1_2_12_65_1 doi: 10.1039/C7EE03062B – ident: e_1_2_12_155_1 doi: 10.1021/ja500860m – ident: e_1_2_12_128_1 doi: 10.1103/PhysRevB.84.125207 – ident: e_1_2_12_16_1 doi: 10.1016/j.pmatsci.2018.04.005 – ident: e_1_2_12_35_1 doi: 10.1038/s41467-018-04660-4 – ident: e_1_2_12_34_1 doi: 10.1016/j.mser.2009.10.001 – ident: e_1_2_12_93_1 doi: 10.1039/C4DT03425B – ident: e_1_2_12_166_1 doi: 10.1038/ncomms12167 – ident: e_1_2_12_48_1 doi: 10.1016/j.nanoen.2016.12.026 – ident: e_1_2_12_95_1 doi: 10.1021/acs.chemmater.6b04066 – ident: e_1_2_12_118_1 doi: 10.1088/0034-4885/51/4/001 – ident: e_1_2_12_18_1 doi: 10.1002/adfm.201703278 – ident: e_1_2_12_108_1 doi: 10.1038/nmat2009 – ident: e_1_2_12_100_1 doi: 10.1002/aenm.201200970 – ident: e_1_2_12_154_1 doi: 10.1021/jp304455z – ident: e_1_2_12_143_1 doi: 10.1007/s11664-012-2316-y – ident: e_1_2_12_69_1 doi: 10.1063/1.3027060 – ident: e_1_2_12_116_1 doi: 10.1038/nmat2330 – ident: e_1_2_12_170_1 doi: 10.1039/C3EE43438A – ident: e_1_2_12_172_1 doi: 10.1021/ja403134b – ident: e_1_2_12_4_1 doi: 10.1038/nenergy.2016.153 – ident: e_1_2_12_27_1 doi: 10.1021/nl504624r – ident: e_1_2_12_32_1 doi: 10.1002/aenm.201502423 – ident: e_1_2_12_94_1 doi: 10.1038/am.2017.8 – ident: e_1_2_12_13_1 doi: 10.1126/science.285.5428.703 – ident: e_1_2_12_97_1 doi: 10.1039/C6TC03789E – ident: e_1_2_12_41_1 doi: 10.1021/cm501188c – ident: e_1_2_12_165_1 doi: 10.1021/jacs.5b07284 – ident: e_1_2_12_58_1 doi: 10.1063/1.3097026 – ident: e_1_2_12_114_1 doi: 10.1063/1.3502547 – ident: e_1_2_12_43_1 doi: 10.1021/cg4009569 – ident: e_1_2_12_37_1 doi: 10.1002/adma.201802000 – ident: e_1_2_12_111_1 doi: 10.1021/ic400381g – ident: e_1_2_12_38_1 doi: 10.1039/C7TA02677C – ident: e_1_2_12_31_1 doi: 10.1021/acs.chemmater.6b01291 – ident: e_1_2_12_77_1 doi: 10.1002/advs.201600196 – ident: e_1_2_12_162_1 doi: 10.1016/j.chempr.2018.04.013 – ident: e_1_2_12_176_1 doi: 10.1103/PhysRevB.91.144304 – ident: e_1_2_12_85_1 doi: 10.1002/adma.201705942 – ident: e_1_2_12_146_1 doi: 10.1016/0022-3697(67)90323-X – ident: e_1_2_12_178_1 doi: 10.1021/acsnano.6b01156 – ident: e_1_2_12_117_1 doi: 10.1088/0022-3719/13/26/009 – ident: e_1_2_12_104_1 doi: 10.1103/PhysRevB.36.6631 – ident: e_1_2_12_169_1 doi: 10.1002/aenm.201401977 – ident: e_1_2_12_185_1 doi: 10.1117/12.2057661 – ident: e_1_2_12_153_1 doi: 10.1088/0953-8984/27/1/015501 – ident: e_1_2_12_112_1 doi: 10.1021/ic400947p – ident: e_1_2_12_25_1 doi: 10.1002/aenm.201702333 – ident: e_1_2_12_105_1 doi: 10.1103/PhysRevLett.59.570 – ident: e_1_2_12_7_1 doi: 10.1557/mrs2006.49 – ident: e_1_2_12_120_1 doi: 10.1039/c2ee21536e – ident: e_1_2_12_70_1 doi: 10.1063/1.1713126 – ident: e_1_2_12_183_1 doi: 10.1039/C5QI00230C – ident: e_1_2_12_175_1 doi: 10.1039/C6EE00322B – ident: e_1_2_12_28_1 doi: 10.1039/C0JM02755C – ident: e_1_2_12_8_1 doi: 10.1038/515484a – ident: e_1_2_12_49_1 doi: 10.1002/advs.201801514 – ident: e_1_2_12_52_1 doi: 10.1038/am.2014.39 – ident: e_1_2_12_145_1 doi: 10.1002/adfm.201001307 – ident: e_1_2_12_129_1 doi: 10.1103/PhysRevB.94.161201 – ident: e_1_2_12_136_1 doi: 10.1021/acsomega.7b01364 – ident: e_1_2_12_53_1 doi: 10.1002/aelm.201500025 – ident: e_1_2_12_84_1 doi: 10.1103/PhysRevB.91.054110 – volume-title: Solid State Physics year: 1976 ident: e_1_2_12_119_1 – ident: e_1_2_12_181_1 doi: 10.1088/0022-3727/39/4/021 – ident: e_1_2_12_99_1 doi: 10.1002/advs.201700341 – ident: e_1_2_12_110_1 doi: 10.1002/anie.201508381 – ident: e_1_2_12_151_1 doi: 10.1063/1.4983404 – ident: e_1_2_12_66_1 doi: 10.1088/0022-3727/40/2/035 – ident: e_1_2_12_17_1 doi: 10.1002/aenm.201701797 – ident: e_1_2_12_46_1 doi: 10.1002/adma.201606768 – ident: e_1_2_12_157_1 doi: 10.1021/jacs.8b12624 – ident: e_1_2_12_30_1 doi: 10.1021/ja507945h – ident: e_1_2_12_184_1 doi: 10.1002/aenm.201500272 – ident: e_1_2_12_124_1 doi: 10.1039/C5CP07620J – ident: e_1_2_12_152_1 doi: 10.1103/PhysRevB.73.045210 – ident: e_1_2_12_121_1 doi: 10.1038/nature09996 – ident: e_1_2_12_33_1 doi: 10.1002/adma.200600527 – ident: e_1_2_12_2_1 doi: 10.1002/adma.201605884 – ident: e_1_2_12_5_1 doi: 10.1016/j.enconman.2017.02.070 – ident: e_1_2_12_139_1 doi: 10.1103/PhysRevB.81.115106 – ident: e_1_2_12_147_1 doi: 10.1039/C5NR04771D – ident: e_1_2_12_60_1 doi: 10.1038/ncomms5515 – ident: e_1_2_12_148_1 doi: 10.1021/jacs.8b09147 – ident: e_1_2_12_149_1 doi: 10.1002/aenm.201800056 – ident: e_1_2_12_164_1 doi: 10.1039/C4EE01463D – ident: e_1_2_12_42_1 doi: 10.1039/C6NR00719H – ident: e_1_2_12_123_1 doi: 10.1039/C4CP02091J – ident: e_1_2_12_126_1 doi: 10.1103/PhysRevB.74.125202 – ident: e_1_2_12_179_1 doi: 10.1016/j.nanoen.2015.12.009 – ident: e_1_2_12_9_1 doi: 10.1002/admt.201700256 – ident: e_1_2_12_14_1 doi: 10.1039/b822664b – ident: e_1_2_12_135_1 doi: 10.1039/C4TA00539B – ident: e_1_2_12_6_1 doi: 10.1557/mrs2006.44 – ident: e_1_2_12_90_1 doi: 10.1038/ncomms4525 – ident: e_1_2_12_113_1 doi: 10.1038/nmat1080 – ident: e_1_2_12_61_1 doi: 10.1021/nl303449x – ident: e_1_2_12_76_1 doi: 10.1021/acs.chemmater.5b03708 – ident: e_1_2_12_160_1 doi: 10.1039/C1EE02465E – ident: e_1_2_12_23_1 doi: 10.1073/pnas.1305735110 – ident: e_1_2_12_67_1 doi: 10.1073/pnas.1608794113 – ident: e_1_2_12_89_1 doi: 10.1038/nmat3035 – ident: e_1_2_12_15_1 doi: 10.1016/j.pnsc.2012.11.011 – ident: e_1_2_12_156_1 doi: 10.1021/acsami.7b06083 – ident: e_1_2_12_20_1 doi: 10.1073/pnas.1424388112 – ident: e_1_2_12_115_1 doi: 10.1038/nmat2226 – ident: e_1_2_12_3_1 doi: 10.1126/science.aak9997 – ident: e_1_2_12_161_1 doi: 10.1088/1674-1056/27/4/048403 – ident: e_1_2_12_39_1 doi: 10.1021/nl202935k – ident: e_1_2_12_44_1 doi: 10.1002/adfm.201300663 – ident: e_1_2_12_64_1 doi: 10.1038/ncomms8584 – ident: e_1_2_12_88_1 doi: 10.1002/adma.201803777 – ident: e_1_2_12_167_1 doi: 10.1039/c3ee42187b – ident: e_1_2_12_45_1 doi: 10.1016/j.nanoen.2018.03.058 – volume-title: Electronic Structure, Correlation Effects and Physical Properties of d‐ and f‐Metals and Their Compounds year: 2007 ident: e_1_2_12_158_1 – ident: e_1_2_12_141_1 doi: 10.1021/jacs.7b13611 – ident: e_1_2_12_182_1 doi: 10.1007/BF00550400 – ident: e_1_2_12_24_1 doi: 10.1002/aenm.201600498 – ident: e_1_2_12_72_1 doi: 10.1039/C4EE03042G – ident: e_1_2_12_144_1 doi: 10.1002/adfm.201103049 – ident: e_1_2_12_10_1 doi: 10.1038/nnano.2008.417 – ident: e_1_2_12_19_1 doi: 10.1039/C5EE02600H – ident: e_1_2_12_51_1 doi: 10.1016/j.mattod.2013.05.004 – ident: e_1_2_12_55_1 doi: 10.1002/aenm.201500411 – ident: e_1_2_12_83_1 doi: 10.1039/C6TC02501C – ident: e_1_2_12_12_1 doi: 10.1002/anie.201802681 – ident: e_1_2_12_22_1 doi: 10.1126/science.1159725 – ident: e_1_2_12_133_1 doi: 10.1080/00207215908937186 – ident: e_1_2_12_63_1 doi: 10.1002/adma.201201565 – ident: e_1_2_12_91_1 doi: 10.1016/j.joule.2018.02.016 – ident: e_1_2_12_109_1 doi: 10.1103/PhysRevB.2.1216 – ident: e_1_2_12_140_1 doi: 10.1063/1.4905922 – ident: e_1_2_12_173_1 doi: 10.1002/adma.201605887 – ident: e_1_2_12_177_1 doi: 10.1103/PhysRevB.91.094306 – ident: e_1_2_12_96_1 doi: 10.1021/jacs.7b05143 – ident: e_1_2_12_62_1 doi: 10.1007/s11664-010-1435-6 |
| SSID | ssj0009606 |
| Score | 2.6690757 |
| SecondaryResourceType | review_article |
| Snippet | Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1807071 |
| SubjectTerms | Banded structure Carrier density Cooling Crystal structure Degrees of freedom GeTe thermoelectrics Materials science multiple valence bands Phase transitions phonon scatterings Phonons resonant bonding Spacecraft Thermal conductivity Thermoelectric materials Transport properties |
| Title | Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201807071 https://www.ncbi.nlm.nih.gov/pubmed/30756468 https://www.proquest.com/docview/2201708245 https://www.proquest.com/docview/2202194322 |
| Volume | 31 |
| WOSCitedRecordID | wos000467974100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9ihcN2GLCxrQMqIyFxipo4iT-O1UrpARACKvUW2bEtIY0GtXR__56dNKWa0CS4OYoTW_b7fvbvAZxqqnPphM8ZoqeTCX9Z2XATMaEpVzYrTVwXm-DX12I6lTcvbvHX-BBtwM1zRpDXnsGVXvTXoKHKBNygRHjAGvR_tikSb96B7eHtaHK5Bt5lob6mz_dFkmViBdwY0_7mHzYV0z_W5qbxGrTPaPf9896Dz43lSQY1qezDlp19gU8v8Ai_whSJZv5Y1aVxHkpyYe8t8ZFaMgzHNywZWvTP7YJUjoywYapHMlY-JkFC4N4acrd8snMPgkxu1ncSDmAyOr__NY6a0gtRiVotidDIkDpWsUszg_rLucTxVEtleKypsGmiUomigZVCco02DFoNLGVGGuRiXkqTfoPOrJrZH0ASnerSac2Z1ZlyiWaWp4ahG-W4VDzvQrRa96JscMl9eYzfRY2oTAu_YkW7Yl04a_s_1Ygcr_Y8Wm1j0XDmoqDUIwYJmuHAJ-1r5CmfKFEzWy1DHxTkGcq6Lnyvt78dCmVizjImukDDLv9nDsVgeDVon36-5aND-IjtkMKK8yPoPM-X9hh2yj_PD4t5Dz7wqeg1VP8XXg3-wg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6MdrD1oVu3tU3bbSoM9mRqy4ouj6FZlrE0lC6FvBnJkqDQxiVp-vt7JDtOwxiDsTdfZEtI536k7wB8MdR0lZchZ4ieDpPhsLIVNuHSUKEdK21aF5sQ47GcTtVls5swnIWp8SHagFvgjCivA4OHgPTZGjVU2wgclMmAWIMO0DZDWkIi3-5fDa5Ha-RdHgtshoRfojiTK-TGlJ5t_mFTM_1mbm5ar1H9DN78h4G_hd3G9iS9mlj24IWbvYOdZ4iE72GKZDO_q-riODcl-e4mjoRYLenHDRyO9B166G5BKk8GeGGrOzLUISpBYujeWfJree_mAQaZXK5PJXyA68G3yfkwaYovJCXqtSxBM0OZVKc-ZxY1mPeZF7lR2orUUOnyTOcKhQMvpRIGrRi0G3jOrbLIx6JUNt-HrVk1c4dAMpOb0hsjuDNM-8xwJ3LL0ZHyQmnR7UCymviibJDJQ4GM26LGVKZFmLGinbEOfG3b39eYHH9sebJax6LhzUVBacAMkpRhx6fta-SqkCrRM1ctYxsU5QylXQcO6vVvu0Kp2OWMyw7QuMx_GUPR61_02rujf_noM7waTi5GxejH-OcxvMbnMaGVdk9g62G-dB_hZfn4cLOYf2qI_wmsTAHZ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6UdIztYd19WbtNhcGeTG1Z0eUxzPNa1obQtZA3I1kSFNY4JM1-_45kx2kYYzD25otsiSOdu_QdgI-GmpHyMuQM0dNhMhxWtsImXBoqtGO1TdtiE2IykbOZmna7CcNZmBYfog-4Bc6I8jowuFtYf7JFDdU2AgdlMiDWoAO0z0IlmQHsF5fl9fkWeZfHApsh4ZcozuQGuTGlJ7t_2NVMv5mbu9ZrVD_lwX8Y-FN40tmeZNwulmew5-bP4fE9RMIXMMNls7xt2uI4NzX56q4cCbFaUsQNHI4UDj10tyKNJyVe2OaWnOoQlSAxdO8s-b5euGWAQSbT7amEl3Bdfrn6fJp0xReSGvValqCZoUyqU58zixrM-8yL3ChtRWqodHmmc4XCgddSCYNWDNoNPOdWWeRjUSubv4LBvJm7N0Ayk5vaGyO4M0z7zHAncsvRkfJCaTEaQrIhfFV3yOShQMaPqsVUplWgWNVTbAif-vaLFpPjjy2PNvNYdby5qigNmEGSMuz4uH-NXBVSJXrumnVsg6KcobQbwut2_vuuUCqOOONyCDRO81_GUI2Li3F_9_ZfPvoAD6dFWZ2fTb4dwiN8HPNZ6egIBnfLtXsHD-qfdzer5ftu7f8CMoMBVA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoelectric+GeTe+with+Diverse+Degrees+of+Freedom+Having+Secured+Superhigh+Performance&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hong%2C+Min&rft.au=Zou%2C+Jin&rft.au=Chen%2C+Zhi%E2%80%90Gang&rft.date=2019-04-05&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201807071&rft.externalDBID=10.1002%252Fadma.201807071&rft.externalDocID=ADMA201807071 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |