Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance

Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh‐pe...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 31; no. 14; pp. e1807071 - n/a
Main Authors: Hong, Min, Zou, Jin, Chen, Zhi‐Gang
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 05.04.2019
Subjects:
ISSN:0935-9648, 1521-4095, 1521-4095
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh‐performance GeTe‐based thermoelectric materials is reviewed with a focus on the crystal structures, phase transitions, resonant bondings, multiple valance bands, and phonon dispersions. These features diversify the degrees of freedom to tune the transport properties of electrons and phonons for GeTe. On the basis of the optimized carrier concentration, strategies of alignment of multiple valence bands and density‐of‐state resonant distortion are employed to further enhance the thermoelectric performance of GeTe‐based materials. To decrease the thermal conductivity, methods of strengthening intrinsic phonon–phonon interactions and introducing various lattice imperfections as scattering centers are highlighted. An overview of thermoelectric devices assembled from GeTe‐based thermoelectric materials is then presented. In conclusion, possible future directions for developing GeTe in thermoelectric applications are proposed. The achieved high thermoelectric performance in GeTe‐based thermoelectric materials with rationally established strategies can act as a reference for broader materials to tailor their thermoelectric performance. Recent progress in GeTe thermoelectrics is reviewed with a focus on the diverse degrees of freedom to tailor thermoelectric properties. The strategies for enhancing power factors include optimizing carrier concentration, aligning multiple valence bands, density‐of‐state resonant distortion, and increasing band degeneracy by slight symmetry reduction. Decreasing the thermal conductivity can be achieved by intrinsically strengthening the phonon–phonon interactions and introducing planar vacancies.
AbstractList Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh‐performance GeTe‐based thermoelectric materials is reviewed with a focus on the crystal structures, phase transitions, resonant bondings, multiple valance bands, and phonon dispersions. These features diversify the degrees of freedom to tune the transport properties of electrons and phonons for GeTe. On the basis of the optimized carrier concentration, strategies of alignment of multiple valence bands and density‐of‐state resonant distortion are employed to further enhance the thermoelectric performance of GeTe‐based materials. To decrease the thermal conductivity, methods of strengthening intrinsic phonon–phonon interactions and introducing various lattice imperfections as scattering centers are highlighted. An overview of thermoelectric devices assembled from GeTe‐based thermoelectric materials is then presented. In conclusion, possible future directions for developing GeTe in thermoelectric applications are proposed. The achieved high thermoelectric performance in GeTe‐based thermoelectric materials with rationally established strategies can act as a reference for broader materials to tailor their thermoelectric performance.
Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh‐performance GeTe‐based thermoelectric materials is reviewed with a focus on the crystal structures, phase transitions, resonant bondings, multiple valance bands, and phonon dispersions. These features diversify the degrees of freedom to tune the transport properties of electrons and phonons for GeTe. On the basis of the optimized carrier concentration, strategies of alignment of multiple valence bands and density‐of‐state resonant distortion are employed to further enhance the thermoelectric performance of GeTe‐based materials. To decrease the thermal conductivity, methods of strengthening intrinsic phonon–phonon interactions and introducing various lattice imperfections as scattering centers are highlighted. An overview of thermoelectric devices assembled from GeTe‐based thermoelectric materials is then presented. In conclusion, possible future directions for developing GeTe in thermoelectric applications are proposed. The achieved high thermoelectric performance in GeTe‐based thermoelectric materials with rationally established strategies can act as a reference for broader materials to tailor their thermoelectric performance. Recent progress in GeTe thermoelectrics is reviewed with a focus on the diverse degrees of freedom to tailor thermoelectric properties. The strategies for enhancing power factors include optimizing carrier concentration, aligning multiple valence bands, density‐of‐state resonant distortion, and increasing band degeneracy by slight symmetry reduction. Decreasing the thermal conductivity can be achieved by intrinsically strengthening the phonon–phonon interactions and introducing planar vacancies.
Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh-performance GeTe-based thermoelectric materials is reviewed with a focus on the crystal structures, phase transitions, resonant bondings, multiple valance bands, and phonon dispersions. These features diversify the degrees of freedom to tune the transport properties of electrons and phonons for GeTe. On the basis of the optimized carrier concentration, strategies of alignment of multiple valence bands and density-of-state resonant distortion are employed to further enhance the thermoelectric performance of GeTe-based materials. To decrease the thermal conductivity, methods of strengthening intrinsic phonon-phonon interactions and introducing various lattice imperfections as scattering centers are highlighted. An overview of thermoelectric devices assembled from GeTe-based thermoelectric materials is then presented. In conclusion, possible future directions for developing GeTe in thermoelectric applications are proposed. The achieved high thermoelectric performance in GeTe-based thermoelectric materials with rationally established strategies can act as a reference for broader materials to tailor their thermoelectric performance.Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh-performance GeTe-based thermoelectric materials is reviewed with a focus on the crystal structures, phase transitions, resonant bondings, multiple valance bands, and phonon dispersions. These features diversify the degrees of freedom to tune the transport properties of electrons and phonons for GeTe. On the basis of the optimized carrier concentration, strategies of alignment of multiple valence bands and density-of-state resonant distortion are employed to further enhance the thermoelectric performance of GeTe-based materials. To decrease the thermal conductivity, methods of strengthening intrinsic phonon-phonon interactions and introducing various lattice imperfections as scattering centers are highlighted. An overview of thermoelectric devices assembled from GeTe-based thermoelectric materials is then presented. In conclusion, possible future directions for developing GeTe in thermoelectric applications are proposed. The achieved high thermoelectric performance in GeTe-based thermoelectric materials with rationally established strategies can act as a reference for broader materials to tailor their thermoelectric performance.
Author Hong, Min
Chen, Zhi‐Gang
Zou, Jin
Author_xml – sequence: 1
  givenname: Min
  surname: Hong
  fullname: Hong, Min
  organization: University of Queensland
– sequence: 2
  givenname: Jin
  surname: Zou
  fullname: Zou, Jin
  email: j.zou@uq.edu.au
  organization: University of Queensland
– sequence: 3
  givenname: Zhi‐Gang
  orcidid: 0000-0002-9309-7993
  surname: Chen
  fullname: Chen, Zhi‐Gang
  email: zhigang.chen@usq.edu.au, zhigang.chen@uq.edu.au
  organization: University of Queensland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30756468$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJSTZprj0WQS-9eDv6sGUdl2w-CgkJZAu9CVke7yrY1layE_Lv62WTFgKhp5nD87wM8x6Tgz70SMhnBnMGwL_burNzDqwEBYp9IDOWc5ZJ0PkBmYEWeaYLWR6R45QeAEAXUBySIwEqL2RRzsiv1QZjF7BFN0Tv6CWukD75YUOX_hFjQrrEdURMNDT0Ylrq0NEr--j7Nb1HN0as6f24xbjx6w29w9iE2Nne4SfysbFtwtOXeUJ-Xpyvzq6y69vLH2eL68xJJliW51JXYKERsi6lahrWKFFpWyuoeImCWaEFsMKVWlV5KRnXhShqXVcAyulanJBv-9xtDL9HTIPpfHLYtrbHMCbDOXCmpeB8Qr--QR_CGPvpuh3FFJRc5hP15YUaqw5rs42-s_HZvP5sAuQecDGkFLExzg928KEfovWtYWB21ZhdNeZvNZM2f6O9Jr8r6L3w5Ft8_g9tFsubxT_3D6Q0nsY
CitedBy_id crossref_primary_10_1002_smll_202205624
crossref_primary_10_1080_10408436_2022_2053499
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1360_TB_2024_0793
crossref_primary_10_1002_adma_201904316
crossref_primary_10_1039_D0MH00954G
crossref_primary_10_1021_jacs_4c04453
crossref_primary_10_1016_j_mtphys_2022_100682
crossref_primary_10_1021_jacs_5c05116
crossref_primary_10_3390_ma15020406
crossref_primary_10_1002_aenm_202102012
crossref_primary_10_1016_j_cej_2022_139269
crossref_primary_10_1002_inf2_12217
crossref_primary_10_1002_smll_202206439
crossref_primary_10_1016_j_mattod_2021_02_016
crossref_primary_10_1002_adfm_202307864
crossref_primary_10_1002_advs_202409494
crossref_primary_10_1002_adfm_202411054
crossref_primary_10_1002_adfm_202304512
crossref_primary_10_1007_s40843_021_1684_0
crossref_primary_10_1002_inf2_12057
crossref_primary_10_1016_j_intermet_2021_107118
crossref_primary_10_1016_j_cej_2023_146194
crossref_primary_10_1016_j_jssc_2022_123543
crossref_primary_10_1007_s00339_022_06261_x
crossref_primary_10_1016_j_jallcom_2019_153522
crossref_primary_10_1063_5_0220462
crossref_primary_10_1002_adma_202500802
crossref_primary_10_1016_j_joule_2020_03_004
crossref_primary_10_1063_5_0244411
crossref_primary_10_1002_adfm_202510362
crossref_primary_10_1002_adma_201902765
crossref_primary_10_1016_j_jallcom_2019_05_238
crossref_primary_10_1515_ijmr_2021_8406
crossref_primary_10_1016_j_joule_2020_07_021
crossref_primary_10_1016_j_mtphys_2024_101524
crossref_primary_10_1016_j_mtphys_2025_101661
crossref_primary_10_1038_s41467_021_21042_5
crossref_primary_10_1002_adfm_202212421
crossref_primary_10_1002_smll_202408864
crossref_primary_10_1016_j_mtener_2024_101550
crossref_primary_10_1002_aenm_202203361
crossref_primary_10_1016_j_apsusc_2025_163245
crossref_primary_10_1016_j_jallcom_2020_155989
crossref_primary_10_1016_j_nanoen_2019_03_031
crossref_primary_10_1016_j_jallcom_2019_151747
crossref_primary_10_1016_j_mtphys_2020_100308
crossref_primary_10_1039_D4QI00451E
crossref_primary_10_7566_JPSJ_94_024601
crossref_primary_10_1002_adma_202401878
crossref_primary_10_1002_smll_202312145
crossref_primary_10_1002_smll_202500333
crossref_primary_10_1039_D5TA04937G
crossref_primary_10_3390_nano14080722
crossref_primary_10_3390_ma18143232
crossref_primary_10_1016_j_jallcom_2022_164267
crossref_primary_10_1088_1361_6463_ad0f5b
crossref_primary_10_1039_D0SE01788D
crossref_primary_10_1016_j_jallcom_2023_172574
crossref_primary_10_1039_D0EE01004A
crossref_primary_10_1016_j_mattod_2019_11_010
crossref_primary_10_1038_s41467_021_25119_z
crossref_primary_10_1016_j_jpcs_2022_110671
crossref_primary_10_1016_j_solidstatesciences_2025_107904
crossref_primary_10_1002_smll_202105923
crossref_primary_10_1002_adfm_202314499
crossref_primary_10_1007_s12598_024_02862_y
crossref_primary_10_1111_jace_70171
crossref_primary_10_1016_j_cej_2023_145236
crossref_primary_10_1021_jacs_9b13272
crossref_primary_10_1088_1361_6463_acc9d0
crossref_primary_10_1016_j_cej_2022_137278
crossref_primary_10_1021_jacs_9b11405
crossref_primary_10_1039_D3NR04646J
crossref_primary_10_1016_j_mtphys_2023_100993
crossref_primary_10_1039_D0EE01895C
crossref_primary_10_1002_aenm_202201043
crossref_primary_10_1016_j_jallcom_2023_171136
crossref_primary_10_4150_jpm_2024_00395
crossref_primary_10_1002_adfm_202109790
crossref_primary_10_1002_adfm_201904862
crossref_primary_10_1002_adfm_201910059
crossref_primary_10_1016_j_mtphys_2022_100608
crossref_primary_10_1002_adfm_202404021
crossref_primary_10_1021_acsanm_5c02186
crossref_primary_10_54227_mlab_20220048
crossref_primary_10_1002_advs_201902409
crossref_primary_10_1063_5_0040808
crossref_primary_10_1002_smll_202311153
crossref_primary_10_1016_j_cej_2019_04_081
crossref_primary_10_1002_advs_201902923
crossref_primary_10_1002_adma_202110518
crossref_primary_10_1016_j_mtphys_2023_101211
crossref_primary_10_1002_aenm_202103385
crossref_primary_10_1016_j_mtphys_2021_100484
crossref_primary_10_1039_D4EE03090G
crossref_primary_10_1039_D1RA04270J
crossref_primary_10_1016_j_cej_2021_132275
crossref_primary_10_1002_aenm_202103779
crossref_primary_10_1063_5_0128259
crossref_primary_10_1038_s41598_025_92809_9
crossref_primary_10_1002_aenm_202100544
crossref_primary_10_1016_j_nanoen_2020_105649
crossref_primary_10_1016_j_nanoen_2022_107147
crossref_primary_10_1016_j_mtphys_2021_100519
crossref_primary_10_1002_adma_202102575
crossref_primary_10_1016_j_nanoen_2024_109723
crossref_primary_10_1016_j_cej_2025_161275
crossref_primary_10_1016_j_joule_2024_101818
crossref_primary_10_1039_D1NR06962D
crossref_primary_10_3390_mi15030380
crossref_primary_10_1007_s10854_025_15119_w
crossref_primary_10_1016_j_cej_2023_146428
crossref_primary_10_1038_s41467_024_50175_6
crossref_primary_10_1016_j_matchemphys_2024_129520
crossref_primary_10_1002_adma_202208272
crossref_primary_10_1016_j_scriptamat_2023_115313
crossref_primary_10_1016_j_mtphys_2025_101863
crossref_primary_10_1016_j_jtice_2023_104890
crossref_primary_10_1016_j_mtphys_2020_100239
crossref_primary_10_1016_j_mssp_2020_104955
crossref_primary_10_3390_mi13030476
crossref_primary_10_1016_j_jallcom_2020_157727
crossref_primary_10_1038_s41524_023_01148_8
crossref_primary_10_1002_adfm_202213040
crossref_primary_10_1038_s41467_022_33330_9
crossref_primary_10_1038_s41598_019_43911_2
crossref_primary_10_1002_cey2_689
crossref_primary_10_1002_adfm_202208579
crossref_primary_10_1002_aenm_202304029
crossref_primary_10_1063_5_0063080
crossref_primary_10_1002_adma_202102721
crossref_primary_10_1007_s12598_022_02036_8
crossref_primary_10_1002_aenm_202000367
crossref_primary_10_1002_adfm_202403498
crossref_primary_10_1002_smll_202310209
crossref_primary_10_1002_advs_202506612
crossref_primary_10_1002_adfm_202107433
crossref_primary_10_1016_j_susmat_2020_e00183
crossref_primary_10_1002_adma_202505601
crossref_primary_10_1016_j_matpr_2020_03_044
crossref_primary_10_1016_j_cej_2022_136131
crossref_primary_10_1016_j_ceramint_2022_04_195
crossref_primary_10_1039_C9NR09331A
crossref_primary_10_1016_j_ceramint_2021_07_243
crossref_primary_10_1021_jacs_0c03696
crossref_primary_10_1016_j_actamat_2023_118926
crossref_primary_10_1021_acsaelm_5c00720
crossref_primary_10_54227_mlab_20230032
crossref_primary_10_1002_aenm_202400623
crossref_primary_10_1016_j_actamat_2022_118565
crossref_primary_10_1039_D4SC06615D
crossref_primary_10_3390_en17215358
crossref_primary_10_1002_adfm_201903841
crossref_primary_10_1021_acs_chemmater_5c01120
crossref_primary_10_1016_j_jallcom_2024_177069
crossref_primary_10_1016_j_jssc_2024_124617
crossref_primary_10_1002_pssr_202000482
crossref_primary_10_1016_j_jallcom_2022_165965
crossref_primary_10_1016_j_physe_2025_116359
crossref_primary_10_1088_0256_307X_38_12_127201
crossref_primary_10_1016_j_mtphys_2023_101081
crossref_primary_10_1016_j_carbon_2019_04_007
crossref_primary_10_3390_electronics8121514
crossref_primary_10_1142_S0217984924502245
crossref_primary_10_1002_adma_202100163
crossref_primary_10_1002_cnma_202100033
crossref_primary_10_1016_j_mtphys_2021_100507
crossref_primary_10_1016_j_commatsci_2024_113160
crossref_primary_10_1016_j_jallcom_2020_157984
crossref_primary_10_3390_ma12223783
Cites_doi 10.1016/j.nanoen.2015.03.034
10.1038/nature10593
10.1016/j.nanoen.2018.06.030
10.1007/s11664-012-2249-5
10.1073/pnas.93.15.7436
10.1021/acs.chemmater.5b02784
10.1016/j.ensm.2017.08.014
10.1002/advs.201600004
10.1103/PhysRevB.79.075204
10.1002/adma.201801787
10.1002/adma.201203199
10.1021/nl8026795
10.1002/aenm.201801837
10.1021/acs.chemmater.5b03434
10.1002/adma.201801072
10.1039/C4EE03157A
10.1073/pnas.1111419109
10.1038/ncomms9144
10.1021/acs.chemrev.6b00255
10.1021/jacs.6b07010
10.1038/nature13184
10.1039/C5RA18369C
10.1039/C1EE02612G
10.1002/adma.201705617
10.1021/jacs.5b00837
10.1002/adma.201202919
10.1038/am.2016.203
10.1021/acsenergylett.8b00137
10.1039/C5TC04339E
10.1021/acsami.5b07596
10.1039/C3EE43099E
10.1063/1.4752110
10.1039/C7EE02530K
10.1039/C4CP02399D
10.1002/anie.200900598
10.1021/ja504896a
10.1002/pssb.201248412
10.1038/ncomms13828
10.1007/s11664-015-4003-2
10.1021/acs.chemmater.8b03732
10.1088/0953-8984/21/39/395502
10.1126/science.aad3749
10.1021/ja307910u
10.1038/s41598-017-01154-z
10.1038/npjcompumats.2015.1
10.1038/nmat2090
10.1038/nmat1807
10.1038/nmat4430
10.1021/jacs.8b09375
10.1039/C7EE03062B
10.1021/ja500860m
10.1103/PhysRevB.84.125207
10.1016/j.pmatsci.2018.04.005
10.1038/s41467-018-04660-4
10.1016/j.mser.2009.10.001
10.1039/C4DT03425B
10.1038/ncomms12167
10.1016/j.nanoen.2016.12.026
10.1021/acs.chemmater.6b04066
10.1088/0034-4885/51/4/001
10.1002/adfm.201703278
10.1038/nmat2009
10.1002/aenm.201200970
10.1021/jp304455z
10.1007/s11664-012-2316-y
10.1063/1.3027060
10.1038/nmat2330
10.1039/C3EE43438A
10.1021/ja403134b
10.1038/nenergy.2016.153
10.1021/nl504624r
10.1002/aenm.201502423
10.1038/am.2017.8
10.1126/science.285.5428.703
10.1039/C6TC03789E
10.1021/cm501188c
10.1021/jacs.5b07284
10.1063/1.3097026
10.1063/1.3502547
10.1021/cg4009569
10.1002/adma.201802000
10.1021/ic400381g
10.1039/C7TA02677C
10.1021/acs.chemmater.6b01291
10.1002/advs.201600196
10.1016/j.chempr.2018.04.013
10.1103/PhysRevB.91.144304
10.1002/adma.201705942
10.1016/0022-3697(67)90323-X
10.1021/acsnano.6b01156
10.1088/0022-3719/13/26/009
10.1103/PhysRevB.36.6631
10.1002/aenm.201401977
10.1117/12.2057661
10.1088/0953-8984/27/1/015501
10.1021/ic400947p
10.1002/aenm.201702333
10.1103/PhysRevLett.59.570
10.1557/mrs2006.49
10.1039/c2ee21536e
10.1063/1.1713126
10.1039/C5QI00230C
10.1039/C6EE00322B
10.1039/C0JM02755C
10.1038/515484a
10.1002/advs.201801514
10.1038/am.2014.39
10.1002/adfm.201001307
10.1103/PhysRevB.94.161201
10.1021/acsomega.7b01364
10.1002/aelm.201500025
10.1103/PhysRevB.91.054110
10.1088/0022-3727/39/4/021
10.1002/advs.201700341
10.1002/anie.201508381
10.1063/1.4983404
10.1088/0022-3727/40/2/035
10.1002/aenm.201701797
10.1002/adma.201606768
10.1021/jacs.8b12624
10.1021/ja507945h
10.1002/aenm.201500272
10.1039/C5CP07620J
10.1103/PhysRevB.73.045210
10.1038/nature09996
10.1002/adma.200600527
10.1002/adma.201605884
10.1016/j.enconman.2017.02.070
10.1103/PhysRevB.81.115106
10.1039/C5NR04771D
10.1038/ncomms5515
10.1021/jacs.8b09147
10.1002/aenm.201800056
10.1039/C4EE01463D
10.1039/C6NR00719H
10.1039/C4CP02091J
10.1103/PhysRevB.74.125202
10.1016/j.nanoen.2015.12.009
10.1002/admt.201700256
10.1039/b822664b
10.1039/C4TA00539B
10.1557/mrs2006.44
10.1038/ncomms4525
10.1038/nmat1080
10.1021/nl303449x
10.1021/acs.chemmater.5b03708
10.1039/C1EE02465E
10.1073/pnas.1305735110
10.1073/pnas.1608794113
10.1038/nmat3035
10.1016/j.pnsc.2012.11.011
10.1021/acsami.7b06083
10.1073/pnas.1424388112
10.1038/nmat2226
10.1126/science.aak9997
10.1088/1674-1056/27/4/048403
10.1021/nl202935k
10.1002/adfm.201300663
10.1038/ncomms8584
10.1002/adma.201803777
10.1039/c3ee42187b
10.1016/j.nanoen.2018.03.058
10.1021/jacs.7b13611
10.1007/BF00550400
10.1002/aenm.201600498
10.1039/C4EE03042G
10.1002/adfm.201103049
10.1038/nnano.2008.417
10.1039/C5EE02600H
10.1016/j.mattod.2013.05.004
10.1002/aenm.201500411
10.1039/C6TC02501C
10.1002/anie.201802681
10.1126/science.1159725
10.1080/00207215908937186
10.1002/adma.201201565
10.1016/j.joule.2018.02.016
10.1103/PhysRevB.2.1216
10.1063/1.4905922
10.1002/adma.201605887
10.1103/PhysRevB.91.094306
10.1021/jacs.7b05143
10.1007/s11664-010-1435-6
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201807071
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30756468
10_1002_adma_201807071
ADMA201807071
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: USQ
– fundername: Australian Research Council
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4131-5549b0a0f34d847ff1f73b9ad70b28e31a393016c897b584129636d9db007c9d3
IEDL.DBID DRFUL
ISICitedReferencesCount 257
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467974100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:43:40 EDT 2025
Sun Nov 30 04:27:26 EST 2025
Thu Apr 03 07:10:11 EDT 2025
Tue Nov 18 22:11:13 EST 2025
Sat Nov 29 07:19:56 EST 2025
Wed Jan 22 16:36:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords phonon scatterings
phase transitions
GeTe thermoelectrics
resonant bonding
multiple valence bands
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4131-5549b0a0f34d847ff1f73b9ad70b28e31a393016c897b584129636d9db007c9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9309-7993
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201807071
PMID 30756468
PQID 2201708245
PQPubID 2045203
PageCount 23
ParticipantIDs proquest_miscellaneous_2202194322
proquest_journals_2201708245
pubmed_primary_30756468
crossref_citationtrail_10_1002_adma_201807071
crossref_primary_10_1002_adma_201807071
wiley_primary_10_1002_adma_201807071_ADMA201807071
PublicationCentury 2000
PublicationDate April 5, 2019
PublicationDateYYYYMMDD 2019-04-05
PublicationDate_xml – month: 04
  year: 2019
  text: April 5, 2019
  day: 05
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 479
1987; 36
2013; 3
2006; 31
2006; 39
1999; 285
1976
1967; 28
2014; 26
2004; 3
2012; 12
2013; 6
2014; 136
2018; 48
1959; 7
2011; 473
2018; 9
2018; 8
2018; 3
2018; 2
2018; 5
2012; 134
2018; 4
2015; 137
2009; 94
2013; 52
2014; 16
2007; 6
2018; 30
2013; 110
2015; 91
1964; 35
2012; 24
2012; 22
2016; 45
2007; 19
2012; 101
2019; 31
2011; 84
2016; 10
1996; 93
2016; 94
2016; 18
2018; 27
2017; 139
1987; 59
2012; 109
2016; 4
2016; 6
2009; 79
2016; 7
2016; 1
2016; 3
2015; 112
2016; 20
2017; 140
2016; 28
2018; 11
2018; 10
2012; 116
2018; 97
2016; 8
2016; 9
2017; 5
2017; 7
2017; 8
2006; 74
2017; 2
2013; 25
2017; 4
2006; 73
2013; 23
2008; 7
2008; 8
2011; 10
2015; 106
2017; 357
2017; 9
2010; 63
2009; 48
1970; 2
2010; 67
2014; 5
2013; 16
2014; 2
2013; 13
2017; 32
1969; 4
2015; 44
2016; 113
2011; 21
2014; 9115
2016; 116
2014; 7
2014; 6
2016; 351
2015; 13
2014; 515
2015; 1
2015; 15
2015; 14
2015; 6
2015; 5
2018; 140
2009; 21
2017; 27
2011; 40
2013; 42
2007
2017; 29
1988; 51
2008; 321
2010; 81
2015; 9
2019; 141
2015; 8
2015; 7
2008; 93
2016; 55
2015; 27
2014; 508
1980; 13
2017; 10
2013; 135
2016; 138
2013; 250
2018; 50
2007; 40
2009; 4
2009; 2
2012; 5
2018; 57
e_1_2_12_6_1
e_1_2_12_130_1
e_1_2_12_172_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_138_1
e_1_2_12_115_1
e_1_2_12_153_1
e_1_2_12_134_1
e_1_2_12_176_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
Irkhin V. I. U. (e_1_2_12_158_1) 2007
e_1_2_12_81_1
e_1_2_12_161_1
e_1_2_12_184_1
e_1_2_12_180_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_146_1
e_1_2_12_169_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_142_1
e_1_2_12_165_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_139_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_171_1
Ashcroft N. W. (e_1_2_12_119_1) 1976
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_137_1
e_1_2_12_179_1
e_1_2_12_114_1
e_1_2_12_133_1
e_1_2_12_156_1
e_1_2_12_175_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_160_1
e_1_2_12_141_1
e_1_2_12_183_1
e_1_2_12_122_1
e_1_2_12_168_1
e_1_2_12_29_1
e_1_2_12_149_1
e_1_2_12_126_1
e_1_2_12_164_1
e_1_2_12_103_1
e_1_2_12_145_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_174_1
e_1_2_12_151_1
e_1_2_12_19_1
e_1_2_12_170_1
e_1_2_12_38_1
e_1_2_12_136_1
e_1_2_12_159_1
e_1_2_12_132_1
e_1_2_12_178_1
e_1_2_12_113_1
e_1_2_12_155_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_140_1
e_1_2_12_163_1
e_1_2_12_182_1
e_1_2_12_49_1
e_1_2_12_121_1
e_1_2_12_148_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_144_1
e_1_2_12_167_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_150_1
e_1_2_12_173_1
e_1_2_12_5_1
e_1_2_12_1_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_39_1
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_177_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_185_1
e_1_2_12_162_1
e_1_2_12_181_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_143_1
e_1_2_12_124_1
e_1_2_12_166_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – volume: 30
  start-page: 1705617
  year: 2018
  publication-title: Adv. Mater.
– volume: 473
  start-page: 66
  year: 2011
  publication-title: Nature
– volume: 94
  start-page: 102111
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 138
  start-page: 13647
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1401977
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 91
  start-page: 144304
  year: 2015
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 1223
  year: 2015
  publication-title: Nat. Mater.
– volume: 9
  start-page: 2090
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 976
  year: 2018
  publication-title: Joule
– volume: 16
  start-page: 20120
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 1349
  year: 2015
  publication-title: Nano Lett.
– volume: 3
  start-page: 164
  year: 2004
  publication-title: Nat. Mater.
– volume: 91
  start-page: 094306
  year: 2015
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 15001
  year: 2015
  publication-title: npj Comput. Mater.
– volume: 8
  start-page: 1701797
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1801837
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 520
  year: 1967
  publication-title: J. Phys. Chem. Solids
– volume: 74
  start-page: 125202
  year: 2006
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 3322
  year: 2014
  publication-title: Chem. Mater.
– volume: 57
  start-page: 8037
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 24
  start-page: 4440
  year: 2012
  publication-title: Adv. Mater.
– volume: 51
  start-page: 459
  year: 1988
  publication-title: Rep. Prog. Phys.
– volume: 5
  start-page: 1500272
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1500411
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1700341
  year: 2017
  publication-title: Adv. Sci.
– volume: 27
  start-page: 6708
  year: 2015
  publication-title: Chem. Mater.
– volume: 93
  start-page: 7436
  year: 1996
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 824
  year: 2007
  publication-title: Nat. Mater.
– volume: 4
  start-page: 939
  year: 2018
  publication-title: Chem
– volume: 6
  start-page: 3346
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 40
  start-page: 566
  year: 2007
  publication-title: J. Phys. D: Appl. Phys.
– volume: 351
  start-page: 141
  year: 2016
  publication-title: Science
– volume: 32
  start-page: 174
  year: 2017
  publication-title: Nano Energy
– volume: 137
  start-page: 5100
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 5123
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 2420
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 7355
  year: 2018
  publication-title: Chem. Mater.
– volume: 30
  start-page: 1705942
  year: 2018
  publication-title: Adv. Mater.
– volume: 55
  start-page: 6826
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 9192
  year: 2017
  publication-title: ACS Omega
– volume: 10
  start-page: 4719
  year: 2016
  publication-title: ACS Nano
– volume: 5
  start-page: 10713
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 15883
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 17731
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 20741
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 52
  year: 1959
  publication-title: J. Electron. Control
– volume: 8
  start-page: 216
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 7584
  year: 2015
  publication-title: Nat. Commun.
– volume: 36
  start-page: 6631
  year: 1987
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 7963
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 16153
  year: 2016
  publication-title: Nat. Energy
– year: 2007
– volume: 135
  start-page: 7364
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 13261
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 22612
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  start-page: 6125
  year: 2012
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1605887
  year: 2017
  publication-title: Adv. Mater.
– volume: 39
  start-page: 740
  year: 2006
  publication-title: J. Phys. D: Appl. Phys.
– volume: 2
  start-page: 466
  year: 2009
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1600004
  year: 2016
  publication-title: Adv. Sci.
– volume: 11
  start-page: 311
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1216
  year: 1970
  publication-title: Phys. Rev. B
– volume: 93
  start-page: 193121
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 267
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 9115
  start-page: 911507
  year: 2014
  publication-title: Proc. SPIE.
– volume: 16
  start-page: 166
  year: 2013
  publication-title: Mater. Today
– volume: 10
  start-page: 614
  year: 2011
  publication-title: Nat. Mater.
– volume: 140
  start-page: 2673
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 125
  year: 2016
  publication-title: Inorg. Chem. Front.
– volume: 30
  start-page: 1802000
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: e343
  year: 2017
  publication-title: NPG Asia Mater.
– volume: 21
  start-page: 395502
  year: 2009
  publication-title: J. Phys.: Condens. Matter
– volume: 52
  start-page: 5479
  year: 2013
  publication-title: Inorg. Chem.
– volume: 27
  start-page: 015501
  year: 2015
  publication-title: J. Phys.: Condens. Matter
– volume: 42
  start-page: 1340
  year: 2013
  publication-title: J. Electron. Mater.
– volume: 30
  start-page: 1803777
  year: 2018
  publication-title: Adv. Mater.
– volume: 285
  start-page: 703
  year: 1999
  publication-title: Science
– volume: 136
  start-page: 7006
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 626
  year: 2015
  publication-title: Nano Energy
– volume: 515
  start-page: 484
  year: 2014
  publication-title: Nature
– volume: 7
  start-page: 16237
  year: 2015
  publication-title: Nanoscale
– volume: 7
  start-page: 972
  year: 2008
  publication-title: Nat. Mater.
– volume: 4
  start-page: 235
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 97
  start-page: 283
  year: 2018
  publication-title: Prog. Mater. Sci.
– volume: 31
  start-page: 188
  year: 2006
  publication-title: MRS Bull.
– volume: 59
  start-page: 570
  year: 1987
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 815
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1605884
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 7478
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 1296
  year: 2016
  publication-title: J. Electron. Mater.
– volume: 12
  start-page: 5979
  year: 2012
  publication-title: Nano Lett.
– volume: 13
  start-page: 4855
  year: 1980
  publication-title: J. Phys. C: Solid State Phys.
– volume: 48
  start-page: 189
  year: 2018
  publication-title: Nano Energy
– volume: 22
  start-page: 535
  year: 2012
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 31
  start-page: 1801072
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 983
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1502423
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1600196
  year: 2016
  publication-title: Adv. Sci.
– volume: 63
  start-page: 38
  year: 2010
  publication-title: Phys. Today
– volume: 141
  start-page: 1742
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 8616
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 1702333
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 140
  start-page: 16190
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 530
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 1500025
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 44
  start-page: 2835
  year: 2015
  publication-title: Dalton Trans.
– volume: 109
  start-page: 9705
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 250
  start-page: 1300
  year: 2013
  publication-title: Phys. Status Solidi B
– volume: 35
  start-page: 2899
  year: 1964
  publication-title: J. Appl. Phys.
– volume: 27
  start-page: 7171
  year: 2015
  publication-title: Chem. Mater.
– volume: 73
  start-page: 045210
  year: 2006
  publication-title: Phys. Rev. B
– volume: 67
  start-page: 19
  year: 2010
  publication-title: Mater. Sci. Eng., R
– volume: 20
  start-page: 144
  year: 2016
  publication-title: Nano Energy
– volume: 7
  start-page: 955
  year: 2017
  publication-title: Sci. Rep.
– volume: 5
  start-page: 5510
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 4515
  year: 2014
  publication-title: Nat. Commun.
– volume: 25
  start-page: 509
  year: 2013
  publication-title: Adv. Mater.
– volume: 106
  start-page: 022112
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 13828
  year: 2017
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1801787
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  start-page: 91974
  year: 2015
  publication-title: RSC Adv.
– volume: 4
  start-page: 10011
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 4
  start-page: 313
  year: 1969
  publication-title: J. Mater. Sci.
– volume: 116
  start-page: 12123
  year: 2016
  publication-title: Chem. Rev.
– volume: 5
  start-page: 5246
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: e353
  year: 2017
  publication-title: NPG Asia Mater.
– volume: 29
  start-page: 1606768
  year: 2017
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1043
  year: 2007
  publication-title: Adv. Mater.
– volume: 136
  start-page: 13902
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 705
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 140
  start-page: 167
  year: 2017
  publication-title: Energy Convers. Manage.
– volume: 52
  start-page: 8183
  year: 2013
  publication-title: Inorg. Chem.
– volume: 21
  start-page: 4037
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 7
  start-page: 23694
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 3525
  year: 2014
  publication-title: Nat. Commun.
– volume: 116
  start-page: 15801
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 4796
  year: 2013
  publication-title: Cryst. Growth Des.
– volume: 321
  start-page: 554
  year: 2008
  publication-title: Science
– volume: 28
  start-page: 4628
  year: 2016
  publication-title: Chem. Mater.
– volume: 94
  start-page: 161201
  year: 2016
  publication-title: Phys. Rev. B
– year: 1976
– volume: 508
  start-page: 373
  year: 2014
  publication-title: Nature
– volume: 6
  start-page: 1600498
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 101
  start-page: 113902
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 79
  start-page: 075204
  year: 2009
  publication-title: Phys. Rev. B
– volume: 27
  start-page: 048403
  year: 2018
  publication-title: Chin. Phys. B
– volume: 4
  start-page: 7520
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 122
  year: 2007
  publication-title: Nat. Mater.
– volume: 112
  start-page: 3269
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 4414
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 27
  start-page: 7801
  year: 2015
  publication-title: Chem. Mater.
– volume: 136
  start-page: 11412
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8144
  year: 2015
  publication-title: Nat. Commun.
– volume: 22
  start-page: 2766
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 56
  year: 2012
  publication-title: Nano Lett.
– volume: 7
  start-page: 653
  year: 2008
  publication-title: Nat. Mater.
– volume: 7
  start-page: 804
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 40
  start-page: 533
  year: 2011
  publication-title: J. Electron. Mater.
– volume: 10
  start-page: 130
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 7
  start-page: 251
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 105
  year: 2008
  publication-title: Nat. Mater.
– volume: 9
  start-page: 2224
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 4670
  year: 2008
  publication-title: Nano Lett.
– volume: 50
  start-page: 785
  year: 2018
  publication-title: Nano Energy
– volume: 8
  start-page: 1800056
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 91
  start-page: 054110
  year: 2015
  publication-title: Phys. Rev. B
– volume: 139
  start-page: 9382
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1703278
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 137
  start-page: 11507
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 12167
  year: 2016
  publication-title: Nat. Commun.
– volume: 81
  start-page: 115106
  year: 2010
  publication-title: Phys. Rev. B
– volume: 84
  start-page: 125207
  year: 2011
  publication-title: Phys. Rev. B
– volume: 357
  start-page: 1369
  year: 2017
  publication-title: Science
– volume: 5
  start-page: 1801514
  year: 2018
  publication-title: Adv. Sci.
– volume: 8
  start-page: 8681
  year: 2016
  publication-title: Nanoscale
– volume: 42
  start-page: 1542
  year: 2013
  publication-title: J. Electron. Mater.
– volume: 18
  start-page: 7141
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 29
  start-page: 605
  year: 2017
  publication-title: Chem. Mater.
– volume: 21
  start-page: 441
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 479
  start-page: 380
  year: 2011
  publication-title: Nature
– volume: 113
  start-page: E4125
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 056103
  year: 2017
  publication-title: APL Mater.
– volume: 31
  start-page: 224
  year: 2006
  publication-title: MRS Bull.
– volume: 6
  start-page: e108
  year: 2014
  publication-title: NPG Asia Mater.
– volume: 3
  start-page: 1700256
  year: 2018
  publication-title: Adv. Mater. Technol.
– ident: e_1_2_12_50_1
  doi: 10.1016/j.nanoen.2015.03.034
– ident: e_1_2_12_180_1
  doi: 10.1038/nature10593
– ident: e_1_2_12_47_1
  doi: 10.1016/j.nanoen.2018.06.030
– ident: e_1_2_12_74_1
  doi: 10.1007/s11664-012-2249-5
– ident: e_1_2_12_137_1
  doi: 10.1073/pnas.93.15.7436
– ident: e_1_2_12_68_1
  doi: 10.1021/acs.chemmater.5b02784
– ident: e_1_2_12_40_1
  doi: 10.1016/j.ensm.2017.08.014
– ident: e_1_2_12_56_1
  doi: 10.1002/advs.201600004
– ident: e_1_2_12_106_1
  doi: 10.1103/PhysRevB.79.075204
– ident: e_1_2_12_87_1
  doi: 10.1002/adma.201801787
– ident: e_1_2_12_138_1
  doi: 10.1002/adma.201203199
– ident: e_1_2_12_71_1
  doi: 10.1021/nl8026795
– ident: e_1_2_12_92_1
  doi: 10.1002/aenm.201801837
– ident: e_1_2_12_86_1
  doi: 10.1021/acs.chemmater.5b03434
– ident: e_1_2_12_11_1
  doi: 10.1002/adma.201801072
– ident: e_1_2_12_21_1
  doi: 10.1039/C4EE03157A
– ident: e_1_2_12_171_1
  doi: 10.1073/pnas.1111419109
– ident: e_1_2_12_73_1
  doi: 10.1038/ncomms9144
– ident: e_1_2_12_132_1
  doi: 10.1021/acs.chemrev.6b00255
– ident: e_1_2_12_82_1
  doi: 10.1021/jacs.6b07010
– ident: e_1_2_12_80_1
  doi: 10.1038/nature13184
– ident: e_1_2_12_125_1
  doi: 10.1039/C5RA18369C
– ident: e_1_2_12_159_1
  doi: 10.1039/C1EE02612G
– ident: e_1_2_12_36_1
  doi: 10.1002/adma.201705617
– ident: e_1_2_12_75_1
  doi: 10.1021/jacs.5b00837
– ident: e_1_2_12_130_1
  doi: 10.1002/adma.201202919
– ident: e_1_2_12_142_1
  doi: 10.1038/am.2016.203
– ident: e_1_2_12_163_1
  doi: 10.1021/acsenergylett.8b00137
– ident: e_1_2_12_134_1
  doi: 10.1039/C5TC04339E
– ident: e_1_2_12_54_1
  doi: 10.1021/acsami.5b07596
– ident: e_1_2_12_131_1
  doi: 10.1039/C3EE43099E
– ident: e_1_2_12_57_1
  doi: 10.1063/1.4752110
– ident: e_1_2_12_78_1
  doi: 10.1039/C7EE02530K
– ident: e_1_2_12_102_1
  doi: 10.1039/C4CP02399D
– ident: e_1_2_12_29_1
  doi: 10.1002/anie.200900598
– ident: e_1_2_12_98_1
  doi: 10.1021/ja504896a
– ident: e_1_2_12_103_1
  doi: 10.1002/pssb.201248412
– ident: e_1_2_12_174_1
  doi: 10.1038/ncomms13828
– ident: e_1_2_12_59_1
  doi: 10.1007/s11664-015-4003-2
– ident: e_1_2_12_81_1
  doi: 10.1021/acs.chemmater.8b03732
– ident: e_1_2_12_122_1
  doi: 10.1088/0953-8984/21/39/395502
– ident: e_1_2_12_79_1
  doi: 10.1126/science.aad3749
– ident: e_1_2_12_168_1
  doi: 10.1021/ja307910u
– ident: e_1_2_12_107_1
  doi: 10.1038/s41598-017-01154-z
– ident: e_1_2_12_127_1
  doi: 10.1038/npjcompumats.2015.1
– ident: e_1_2_12_1_1
  doi: 10.1038/nmat2090
– ident: e_1_2_12_150_1
  doi: 10.1038/nmat1807
– ident: e_1_2_12_26_1
  doi: 10.1038/nmat4430
– ident: e_1_2_12_101_1
  doi: 10.1021/jacs.8b09375
– ident: e_1_2_12_65_1
  doi: 10.1039/C7EE03062B
– ident: e_1_2_12_155_1
  doi: 10.1021/ja500860m
– ident: e_1_2_12_128_1
  doi: 10.1103/PhysRevB.84.125207
– ident: e_1_2_12_16_1
  doi: 10.1016/j.pmatsci.2018.04.005
– ident: e_1_2_12_35_1
  doi: 10.1038/s41467-018-04660-4
– ident: e_1_2_12_34_1
  doi: 10.1016/j.mser.2009.10.001
– ident: e_1_2_12_93_1
  doi: 10.1039/C4DT03425B
– ident: e_1_2_12_166_1
  doi: 10.1038/ncomms12167
– ident: e_1_2_12_48_1
  doi: 10.1016/j.nanoen.2016.12.026
– ident: e_1_2_12_95_1
  doi: 10.1021/acs.chemmater.6b04066
– ident: e_1_2_12_118_1
  doi: 10.1088/0034-4885/51/4/001
– ident: e_1_2_12_18_1
  doi: 10.1002/adfm.201703278
– ident: e_1_2_12_108_1
  doi: 10.1038/nmat2009
– ident: e_1_2_12_100_1
  doi: 10.1002/aenm.201200970
– ident: e_1_2_12_154_1
  doi: 10.1021/jp304455z
– ident: e_1_2_12_143_1
  doi: 10.1007/s11664-012-2316-y
– ident: e_1_2_12_69_1
  doi: 10.1063/1.3027060
– ident: e_1_2_12_116_1
  doi: 10.1038/nmat2330
– ident: e_1_2_12_170_1
  doi: 10.1039/C3EE43438A
– ident: e_1_2_12_172_1
  doi: 10.1021/ja403134b
– ident: e_1_2_12_4_1
  doi: 10.1038/nenergy.2016.153
– ident: e_1_2_12_27_1
  doi: 10.1021/nl504624r
– ident: e_1_2_12_32_1
  doi: 10.1002/aenm.201502423
– ident: e_1_2_12_94_1
  doi: 10.1038/am.2017.8
– ident: e_1_2_12_13_1
  doi: 10.1126/science.285.5428.703
– ident: e_1_2_12_97_1
  doi: 10.1039/C6TC03789E
– ident: e_1_2_12_41_1
  doi: 10.1021/cm501188c
– ident: e_1_2_12_165_1
  doi: 10.1021/jacs.5b07284
– ident: e_1_2_12_58_1
  doi: 10.1063/1.3097026
– ident: e_1_2_12_114_1
  doi: 10.1063/1.3502547
– ident: e_1_2_12_43_1
  doi: 10.1021/cg4009569
– ident: e_1_2_12_37_1
  doi: 10.1002/adma.201802000
– ident: e_1_2_12_111_1
  doi: 10.1021/ic400381g
– ident: e_1_2_12_38_1
  doi: 10.1039/C7TA02677C
– ident: e_1_2_12_31_1
  doi: 10.1021/acs.chemmater.6b01291
– ident: e_1_2_12_77_1
  doi: 10.1002/advs.201600196
– ident: e_1_2_12_162_1
  doi: 10.1016/j.chempr.2018.04.013
– ident: e_1_2_12_176_1
  doi: 10.1103/PhysRevB.91.144304
– ident: e_1_2_12_85_1
  doi: 10.1002/adma.201705942
– ident: e_1_2_12_146_1
  doi: 10.1016/0022-3697(67)90323-X
– ident: e_1_2_12_178_1
  doi: 10.1021/acsnano.6b01156
– ident: e_1_2_12_117_1
  doi: 10.1088/0022-3719/13/26/009
– ident: e_1_2_12_104_1
  doi: 10.1103/PhysRevB.36.6631
– ident: e_1_2_12_169_1
  doi: 10.1002/aenm.201401977
– ident: e_1_2_12_185_1
  doi: 10.1117/12.2057661
– ident: e_1_2_12_153_1
  doi: 10.1088/0953-8984/27/1/015501
– ident: e_1_2_12_112_1
  doi: 10.1021/ic400947p
– ident: e_1_2_12_25_1
  doi: 10.1002/aenm.201702333
– ident: e_1_2_12_105_1
  doi: 10.1103/PhysRevLett.59.570
– ident: e_1_2_12_7_1
  doi: 10.1557/mrs2006.49
– ident: e_1_2_12_120_1
  doi: 10.1039/c2ee21536e
– ident: e_1_2_12_70_1
  doi: 10.1063/1.1713126
– ident: e_1_2_12_183_1
  doi: 10.1039/C5QI00230C
– ident: e_1_2_12_175_1
  doi: 10.1039/C6EE00322B
– ident: e_1_2_12_28_1
  doi: 10.1039/C0JM02755C
– ident: e_1_2_12_8_1
  doi: 10.1038/515484a
– ident: e_1_2_12_49_1
  doi: 10.1002/advs.201801514
– ident: e_1_2_12_52_1
  doi: 10.1038/am.2014.39
– ident: e_1_2_12_145_1
  doi: 10.1002/adfm.201001307
– ident: e_1_2_12_129_1
  doi: 10.1103/PhysRevB.94.161201
– ident: e_1_2_12_136_1
  doi: 10.1021/acsomega.7b01364
– ident: e_1_2_12_53_1
  doi: 10.1002/aelm.201500025
– ident: e_1_2_12_84_1
  doi: 10.1103/PhysRevB.91.054110
– volume-title: Solid State Physics
  year: 1976
  ident: e_1_2_12_119_1
– ident: e_1_2_12_181_1
  doi: 10.1088/0022-3727/39/4/021
– ident: e_1_2_12_99_1
  doi: 10.1002/advs.201700341
– ident: e_1_2_12_110_1
  doi: 10.1002/anie.201508381
– ident: e_1_2_12_151_1
  doi: 10.1063/1.4983404
– ident: e_1_2_12_66_1
  doi: 10.1088/0022-3727/40/2/035
– ident: e_1_2_12_17_1
  doi: 10.1002/aenm.201701797
– ident: e_1_2_12_46_1
  doi: 10.1002/adma.201606768
– ident: e_1_2_12_157_1
  doi: 10.1021/jacs.8b12624
– ident: e_1_2_12_30_1
  doi: 10.1021/ja507945h
– ident: e_1_2_12_184_1
  doi: 10.1002/aenm.201500272
– ident: e_1_2_12_124_1
  doi: 10.1039/C5CP07620J
– ident: e_1_2_12_152_1
  doi: 10.1103/PhysRevB.73.045210
– ident: e_1_2_12_121_1
  doi: 10.1038/nature09996
– ident: e_1_2_12_33_1
  doi: 10.1002/adma.200600527
– ident: e_1_2_12_2_1
  doi: 10.1002/adma.201605884
– ident: e_1_2_12_5_1
  doi: 10.1016/j.enconman.2017.02.070
– ident: e_1_2_12_139_1
  doi: 10.1103/PhysRevB.81.115106
– ident: e_1_2_12_147_1
  doi: 10.1039/C5NR04771D
– ident: e_1_2_12_60_1
  doi: 10.1038/ncomms5515
– ident: e_1_2_12_148_1
  doi: 10.1021/jacs.8b09147
– ident: e_1_2_12_149_1
  doi: 10.1002/aenm.201800056
– ident: e_1_2_12_164_1
  doi: 10.1039/C4EE01463D
– ident: e_1_2_12_42_1
  doi: 10.1039/C6NR00719H
– ident: e_1_2_12_123_1
  doi: 10.1039/C4CP02091J
– ident: e_1_2_12_126_1
  doi: 10.1103/PhysRevB.74.125202
– ident: e_1_2_12_179_1
  doi: 10.1016/j.nanoen.2015.12.009
– ident: e_1_2_12_9_1
  doi: 10.1002/admt.201700256
– ident: e_1_2_12_14_1
  doi: 10.1039/b822664b
– ident: e_1_2_12_135_1
  doi: 10.1039/C4TA00539B
– ident: e_1_2_12_6_1
  doi: 10.1557/mrs2006.44
– ident: e_1_2_12_90_1
  doi: 10.1038/ncomms4525
– ident: e_1_2_12_113_1
  doi: 10.1038/nmat1080
– ident: e_1_2_12_61_1
  doi: 10.1021/nl303449x
– ident: e_1_2_12_76_1
  doi: 10.1021/acs.chemmater.5b03708
– ident: e_1_2_12_160_1
  doi: 10.1039/C1EE02465E
– ident: e_1_2_12_23_1
  doi: 10.1073/pnas.1305735110
– ident: e_1_2_12_67_1
  doi: 10.1073/pnas.1608794113
– ident: e_1_2_12_89_1
  doi: 10.1038/nmat3035
– ident: e_1_2_12_15_1
  doi: 10.1016/j.pnsc.2012.11.011
– ident: e_1_2_12_156_1
  doi: 10.1021/acsami.7b06083
– ident: e_1_2_12_20_1
  doi: 10.1073/pnas.1424388112
– ident: e_1_2_12_115_1
  doi: 10.1038/nmat2226
– ident: e_1_2_12_3_1
  doi: 10.1126/science.aak9997
– ident: e_1_2_12_161_1
  doi: 10.1088/1674-1056/27/4/048403
– ident: e_1_2_12_39_1
  doi: 10.1021/nl202935k
– ident: e_1_2_12_44_1
  doi: 10.1002/adfm.201300663
– ident: e_1_2_12_64_1
  doi: 10.1038/ncomms8584
– ident: e_1_2_12_88_1
  doi: 10.1002/adma.201803777
– ident: e_1_2_12_167_1
  doi: 10.1039/c3ee42187b
– ident: e_1_2_12_45_1
  doi: 10.1016/j.nanoen.2018.03.058
– volume-title: Electronic Structure, Correlation Effects and Physical Properties of d‐ and f‐Metals and Their Compounds
  year: 2007
  ident: e_1_2_12_158_1
– ident: e_1_2_12_141_1
  doi: 10.1021/jacs.7b13611
– ident: e_1_2_12_182_1
  doi: 10.1007/BF00550400
– ident: e_1_2_12_24_1
  doi: 10.1002/aenm.201600498
– ident: e_1_2_12_72_1
  doi: 10.1039/C4EE03042G
– ident: e_1_2_12_144_1
  doi: 10.1002/adfm.201103049
– ident: e_1_2_12_10_1
  doi: 10.1038/nnano.2008.417
– ident: e_1_2_12_19_1
  doi: 10.1039/C5EE02600H
– ident: e_1_2_12_51_1
  doi: 10.1016/j.mattod.2013.05.004
– ident: e_1_2_12_55_1
  doi: 10.1002/aenm.201500411
– ident: e_1_2_12_83_1
  doi: 10.1039/C6TC02501C
– ident: e_1_2_12_12_1
  doi: 10.1002/anie.201802681
– ident: e_1_2_12_22_1
  doi: 10.1126/science.1159725
– ident: e_1_2_12_133_1
  doi: 10.1080/00207215908937186
– ident: e_1_2_12_63_1
  doi: 10.1002/adma.201201565
– ident: e_1_2_12_91_1
  doi: 10.1016/j.joule.2018.02.016
– ident: e_1_2_12_109_1
  doi: 10.1103/PhysRevB.2.1216
– ident: e_1_2_12_140_1
  doi: 10.1063/1.4905922
– ident: e_1_2_12_173_1
  doi: 10.1002/adma.201605887
– ident: e_1_2_12_177_1
  doi: 10.1103/PhysRevB.91.094306
– ident: e_1_2_12_96_1
  doi: 10.1021/jacs.7b05143
– ident: e_1_2_12_62_1
  doi: 10.1007/s11664-010-1435-6
SSID ssj0009606
Score 2.6690757
SecondaryResourceType review_article
Snippet Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1807071
SubjectTerms Banded structure
Carrier density
Cooling
Crystal structure
Degrees of freedom
GeTe thermoelectrics
Materials science
multiple valence bands
Phase transitions
phonon scatterings
Phonons
resonant bonding
Spacecraft
Thermal conductivity
Thermoelectric materials
Transport properties
Title Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201807071
https://www.ncbi.nlm.nih.gov/pubmed/30756468
https://www.proquest.com/docview/2201708245
https://www.proquest.com/docview/2202194322
Volume 31
WOSCitedRecordID wos000467974100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9ihcN2GLCxrQMqIyFxipo4iT-O1UrpARACKvUW2bEtIY0GtXR__56dNKWa0CS4OYoTW_b7fvbvAZxqqnPphM8ZoqeTCX9Z2XATMaEpVzYrTVwXm-DX12I6lTcvbvHX-BBtwM1zRpDXnsGVXvTXoKHKBNygRHjAGvR_tikSb96B7eHtaHK5Bt5lob6mz_dFkmViBdwY0_7mHzYV0z_W5qbxGrTPaPf9896Dz43lSQY1qezDlp19gU8v8Ai_whSJZv5Y1aVxHkpyYe8t8ZFaMgzHNywZWvTP7YJUjoywYapHMlY-JkFC4N4acrd8snMPgkxu1ncSDmAyOr__NY6a0gtRiVotidDIkDpWsUszg_rLucTxVEtleKypsGmiUomigZVCco02DFoNLGVGGuRiXkqTfoPOrJrZH0ASnerSac2Z1ZlyiWaWp4ahG-W4VDzvQrRa96JscMl9eYzfRY2oTAu_YkW7Yl04a_s_1Ygcr_Y8Wm1j0XDmoqDUIwYJmuHAJ-1r5CmfKFEzWy1DHxTkGcq6Lnyvt78dCmVizjImukDDLv9nDsVgeDVon36-5aND-IjtkMKK8yPoPM-X9hh2yj_PD4t5Dz7wqeg1VP8XXg3-wg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6MdrD1oVu3tU3bbSoM9mRqy4ouj6FZlrE0lC6FvBnJkqDQxiVp-vt7JDtOwxiDsTdfZEtI536k7wB8MdR0lZchZ4ieDpPhsLIVNuHSUKEdK21aF5sQ47GcTtVls5swnIWp8SHagFvgjCivA4OHgPTZGjVU2wgclMmAWIMO0DZDWkIi3-5fDa5Ha-RdHgtshoRfojiTK-TGlJ5t_mFTM_1mbm5ar1H9DN78h4G_hd3G9iS9mlj24IWbvYOdZ4iE72GKZDO_q-riODcl-e4mjoRYLenHDRyO9B166G5BKk8GeGGrOzLUISpBYujeWfJree_mAQaZXK5PJXyA68G3yfkwaYovJCXqtSxBM0OZVKc-ZxY1mPeZF7lR2orUUOnyTOcKhQMvpRIGrRi0G3jOrbLIx6JUNt-HrVk1c4dAMpOb0hsjuDNM-8xwJ3LL0ZHyQmnR7UCymviibJDJQ4GM26LGVKZFmLGinbEOfG3b39eYHH9sebJax6LhzUVBacAMkpRhx6fta-SqkCrRM1ctYxsU5QylXQcO6vVvu0Kp2OWMyw7QuMx_GUPR61_02rujf_noM7waTi5GxejH-OcxvMbnMaGVdk9g62G-dB_hZfn4cLOYf2qI_wmsTAHZ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6UdIztYd19WbtNhcGeTG1Z0eUxzPNa1obQtZA3I1kSFNY4JM1-_45kx2kYYzD25otsiSOdu_QdgI-GmpHyMuQM0dNhMhxWtsImXBoqtGO1TdtiE2IykbOZmna7CcNZmBYfog-4Bc6I8jowuFtYf7JFDdU2AgdlMiDWoAO0z0IlmQHsF5fl9fkWeZfHApsh4ZcozuQGuTGlJ7t_2NVMv5mbu9ZrVD_lwX8Y-FN40tmeZNwulmew5-bP4fE9RMIXMMNls7xt2uI4NzX56q4cCbFaUsQNHI4UDj10tyKNJyVe2OaWnOoQlSAxdO8s-b5euGWAQSbT7amEl3Bdfrn6fJp0xReSGvValqCZoUyqU58zixrM-8yL3ChtRWqodHmmc4XCgddSCYNWDNoNPOdWWeRjUSubv4LBvJm7N0Ayk5vaGyO4M0z7zHAncsvRkfJCaTEaQrIhfFV3yOShQMaPqsVUplWgWNVTbAif-vaLFpPjjy2PNvNYdby5qigNmEGSMuz4uH-NXBVSJXrumnVsg6KcobQbwut2_vuuUCqOOONyCDRO81_GUI2Li3F_9_ZfPvoAD6dFWZ2fTb4dwiN8HPNZ6egIBnfLtXsHD-qfdzer5ftu7f8CMoMBVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoelectric+GeTe+with+Diverse+Degrees+of+Freedom+Having+Secured+Superhigh+Performance&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hong%2C+Min&rft.au=Zou%2C+Jin&rft.au=Chen%2C+Zhi%E2%80%90Gang&rft.date=2019-04-05&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201807071&rft.externalDBID=10.1002%252Fadma.201807071&rft.externalDocID=ADMA201807071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon