Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance
Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh‐pe...
Saved in:
| Published in: | Advanced materials (Weinheim) Vol. 31; no. 14; pp. e1807071 - n/a |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
05.04.2019
|
| Subjects: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Driven by the ability to harvest waste heat into reusable electricity and the exclusive role of serving as the power generator for deep spacecraft, intensive endeavors are dedicated to enhancing the thermoelectric performance of ecofriendly materials. Herein, the most recent progress in superhigh‐performance GeTe‐based thermoelectric materials is reviewed with a focus on the crystal structures, phase transitions, resonant bondings, multiple valance bands, and phonon dispersions. These features diversify the degrees of freedom to tune the transport properties of electrons and phonons for GeTe. On the basis of the optimized carrier concentration, strategies of alignment of multiple valence bands and density‐of‐state resonant distortion are employed to further enhance the thermoelectric performance of GeTe‐based materials. To decrease the thermal conductivity, methods of strengthening intrinsic phonon–phonon interactions and introducing various lattice imperfections as scattering centers are highlighted. An overview of thermoelectric devices assembled from GeTe‐based thermoelectric materials is then presented. In conclusion, possible future directions for developing GeTe in thermoelectric applications are proposed. The achieved high thermoelectric performance in GeTe‐based thermoelectric materials with rationally established strategies can act as a reference for broader materials to tailor their thermoelectric performance.
Recent progress in GeTe thermoelectrics is reviewed with a focus on the diverse degrees of freedom to tailor thermoelectric properties. The strategies for enhancing power factors include optimizing carrier concentration, aligning multiple valence bands, density‐of‐state resonant distortion, and increasing band degeneracy by slight symmetry reduction. Decreasing the thermal conductivity can be achieved by intrinsically strengthening the phonon–phonon interactions and introducing planar vacancies. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ISSN: | 0935-9648 1521-4095 1521-4095 |
| DOI: | 10.1002/adma.201807071 |