Combined SVM-Based Feature Selection and Classification

Feature selection is an important combinatorial optimisation problem in the context of supervised pattern classification. This paper presents four novel continuous feature selection approaches directly minimising the classifier performance. In particular, we include linear and nonlinear Support Vect...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning Vol. 61; no. 1-3; pp. 129 - 150
Main Authors: Neumann, Julia, Schnörr, Christoph, Steidl, Gabriele
Format: Journal Article
Language:English
Published: Dordrecht Springer Nature B.V 01.11.2005
Subjects:
ISSN:0885-6125, 1573-0565
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Feature selection is an important combinatorial optimisation problem in the context of supervised pattern classification. This paper presents four novel continuous feature selection approaches directly minimising the classifier performance. In particular, we include linear and nonlinear Support Vector Machine classifiers. The key ideas of our approaches are additional regularisation and embedded nonlinear feature selection. To solve our optimisation problems, we apply difference of convex functions programming which is a general framework for non-convex continuous optimisation. Experiments with artificial data and with various real-world problems including organ classification in computed tomography scans demonstrate that our methods accomplish the desired feature selection and classification performance simultaneously.[PUBLICATION ABSTRACT]
AbstractList Feature selection is an important combinatorial optimisation problem in the context of supervised pattern classification. This paper presents four novel continuous feature selection approaches directly minimising the classifier performance. In particular, we include linear and nonlinear Support Vector Machine classifiers. The key ideas of our approaches are additional regularisation and embedded nonlinear feature selection. To solve our optimisation problems, we apply difference of convex functions programming which is a general framework for non-convex continuous optimisation. Experiments with artificial data and with various real-world problems including organ classification in computed tomography scans demonstrate that our methods accomplish the desired feature selection and classification performance simultaneously.
Feature selection is an important combinatorial optimisation problem in the context of supervised pattern classification. This paper presents four novel continuous feature selection approaches directly minimising the classifier performance. In particular, we include linear and nonlinear Support Vector Machine classifiers. The key ideas of our approaches are additional regularisation and embedded nonlinear feature selection. To solve our optimisation problems, we apply difference of convex functions programming which is a general framework for non-convex continuous optimisation. Experiments with artificial data and with various real-world problems including organ classification in computed tomography scans demonstrate that our methods accomplish the desired feature selection and classification performance simultaneously.[PUBLICATION ABSTRACT]
Author Steidl, Gabriele
Neumann, Julia
Schnörr, Christoph
Author_xml – sequence: 1
  givenname: Julia
  surname: Neumann
  fullname: Neumann, Julia
– sequence: 2
  givenname: Christoph
  surname: Schnörr
  fullname: Schnörr, Christoph
– sequence: 3
  givenname: Gabriele
  surname: Steidl
  fullname: Steidl, Gabriele
BookMark eNp9kD1PwzAQhi0EEm3hB7BFDGyG83c8QkUBqYihwGpdXEdylSbFTgb-PSll6sDis07Pe7p7puS07dpAyBWDWwZg7jIDayUFUJSp8bEnZMKUERSUVqdkAmWpqGZcnZNpzhsA4LrUE2Lm3baKbVgXq89X-oB5_C0C9kMKxSo0wfexawts18W8wZxjHT3uWxfkrMYmh8u_OiMfi8f3-TNdvj29zO-X1EvGexqQy6oSKGWlUbMaPASJ2ngQFhCVUqUQuq45C2ttKgxKWA3ay6rWXHouZuTmMHeXuq8h5N5tY_ahabAN3ZAdL620jIsRvD4CN92Q2nE3Z5QBBqWWI2QOkE9dzinUzsf-954-YWwcA7e36Q423WjT7W06OybZUXKX4hbT9z-ZH6Bod2A
CitedBy_id crossref_primary_10_1016_j_eswa_2017_04_019
crossref_primary_10_1007_s10898_023_01272_1
crossref_primary_10_1016_j_artmed_2013_10_001
crossref_primary_10_1007_s10489_020_01865_3
crossref_primary_10_1109_TNNLS_2020_2966746
crossref_primary_10_1162_NECO_a_00283
crossref_primary_10_1016_j_neunet_2015_08_004
crossref_primary_10_1007_s10586_017_1587_8
crossref_primary_10_1016_j_ejor_2020_12_009
crossref_primary_10_1016_j_ejor_2014_11_031
crossref_primary_10_1007_s11390_017_1706_2
crossref_primary_10_1016_j_ins_2010_08_047
crossref_primary_10_1016_j_ins_2014_06_036
crossref_primary_10_1016_j_knosys_2017_06_025
crossref_primary_10_1007_s10915_016_0175_z
crossref_primary_10_1109_ACCESS_2023_3264266
crossref_primary_10_1080_01431160701395203
crossref_primary_10_1007_s10489_016_0778_y
crossref_primary_10_1007_s10844_010_0131_6
crossref_primary_10_1016_j_eswa_2025_126612
crossref_primary_10_1016_j_sigpro_2014_12_012
crossref_primary_10_1016_j_jfranklin_2014_04_021
crossref_primary_10_1016_j_neucom_2022_05_048
crossref_primary_10_3390_e24081157
crossref_primary_10_1016_j_patcog_2007_03_017
crossref_primary_10_4018_ijamc_2014070103
crossref_primary_10_1016_j_jmaa_2023_127320
crossref_primary_10_1016_j_knosys_2019_02_010
crossref_primary_10_1016_j_rineng_2025_104265
crossref_primary_10_1016_j_eswa_2010_03_054
crossref_primary_10_1186_2192_1962_2_12
crossref_primary_10_1016_j_mcm_2012_10_004
crossref_primary_10_1016_j_asoc_2007_10_012
crossref_primary_10_1007_s10489_021_02550_9
crossref_primary_10_1007_s12652_018_1031_9
crossref_primary_10_1007_s10107_018_1235_y
crossref_primary_10_1371_journal_pone_0315740
crossref_primary_10_1007_s00500_021_05630_7
crossref_primary_10_1109_TCYB_2015_2415032
crossref_primary_10_1007_s11634_008_0030_7
crossref_primary_10_1080_07391102_2023_2300132
crossref_primary_10_1016_j_patcog_2016_03_028
crossref_primary_10_1016_j_asoc_2018_02_051
crossref_primary_10_3390_math10152714
crossref_primary_10_1007_s10489_020_01822_0
crossref_primary_10_1109_ACCESS_2022_3232307
crossref_primary_10_1016_j_patcog_2024_110514
crossref_primary_10_1137_17M1146567
crossref_primary_10_1016_j_neucom_2015_12_068
crossref_primary_10_1016_j_csda_2013_01_020
crossref_primary_10_1080_02331930903500274
crossref_primary_10_1016_j_neunet_2014_06_011
crossref_primary_10_1007_s10489_020_01687_3
crossref_primary_10_1080_02331934_2024_2314241
crossref_primary_10_1007_s10489_018_01407_y
crossref_primary_10_1109_ACCESS_2019_2894366
crossref_primary_10_1007_s13042_019_00996_5
crossref_primary_10_1016_j_patrec_2009_10_013
crossref_primary_10_1016_j_compbiomed_2021_104969
crossref_primary_10_1007_s00521_016_2216_9
crossref_primary_10_1016_j_knosys_2014_08_024
crossref_primary_10_1016_j_neunet_2021_02_022
crossref_primary_10_1007_s42979_024_02950_x
crossref_primary_10_1080_10618600_2012_681213
crossref_primary_10_1002_jbio_202100198
crossref_primary_10_1109_TETC_2022_3181679
crossref_primary_10_1007_s10115_017_1055_z
crossref_primary_10_1007_s10462_012_9369_4
crossref_primary_10_1007_s10994_014_5455_y
crossref_primary_10_1109_TNN_2010_2047114
crossref_primary_10_3390_mti8090076
crossref_primary_10_1016_j_asoc_2016_08_011
crossref_primary_10_1007_s10844_021_00680_7
crossref_primary_10_1007_s11227_022_04469_5
crossref_primary_10_1007_s11042_020_08852_3
crossref_primary_10_3390_rs11050546
crossref_primary_10_3233_THC_202656
crossref_primary_10_3390_rs13224560
crossref_primary_10_1016_j_knosys_2007_07_001
crossref_primary_10_1016_j_neucom_2010_02_007
crossref_primary_10_1109_TCBB_2010_119
crossref_primary_10_1016_j_ejor_2023_11_016
crossref_primary_10_1007_s10994_007_5025_7
crossref_primary_10_1016_j_neucom_2015_05_053
crossref_primary_10_1016_j_ins_2008_05_024
crossref_primary_10_1007_s13042_017_0675_7
crossref_primary_10_1016_j_neucom_2014_11_051
crossref_primary_10_1016_j_ymeth_2016_08_014
crossref_primary_10_1016_j_measurement_2023_112651
crossref_primary_10_1016_j_patcog_2024_111157
crossref_primary_10_1016_j_eswa_2021_115975
crossref_primary_10_1007_s10479_016_2333_y
crossref_primary_10_1016_j_inhs_2025_100022
crossref_primary_10_1016_j_ins_2011_07_025
crossref_primary_10_1109_TPAMI_2009_98
crossref_primary_10_1109_TSMC_2019_2904662
crossref_primary_10_1016_j_imavis_2019_06_012
crossref_primary_10_1016_j_eswa_2011_08_051
crossref_primary_10_1016_j_patcog_2008_10_028
crossref_primary_10_1186_s13015_016_0078_4
crossref_primary_10_1016_j_neucom_2025_131337
crossref_primary_10_1007_s10994_025_06773_6
crossref_primary_10_1680_jbren_21_00016
crossref_primary_10_1016_j_crma_2011_08_011
crossref_primary_10_1016_j_compbiomed_2024_108089
crossref_primary_10_3389_fpls_2024_1411485
crossref_primary_10_3762_bjnano_12_66
crossref_primary_10_1016_j_acha_2015_10_010
crossref_primary_10_1016_j_patrec_2017_09_018
crossref_primary_10_1016_j_neucom_2011_01_019
crossref_primary_10_1137_11085476X
crossref_primary_10_1007_s10489_023_05069_3
crossref_primary_10_1016_j_asoc_2019_105616
crossref_primary_10_1016_j_eswa_2023_120243
crossref_primary_10_1109_ACCESS_2020_3014825
crossref_primary_10_1016_j_patcog_2008_04_005
crossref_primary_10_1016_j_ejor_2017_08_040
crossref_primary_10_1016_j_ins_2017_11_035
crossref_primary_10_1016_j_ijar_2022_12_010
crossref_primary_10_1016_j_ipl_2015_07_005
crossref_primary_10_1007_s13042_016_0610_3
crossref_primary_10_1016_j_asoc_2017_04_061
crossref_primary_10_1016_j_compeleceng_2013_11_024
crossref_primary_10_1016_j_cor_2016_04_005
crossref_primary_10_1016_j_patcog_2012_12_012
crossref_primary_10_1080_10556788_2011_652630
crossref_primary_10_1007_s10589_018_0013_3
crossref_primary_10_1109_TNNLS_2012_2201748
crossref_primary_10_2139_ssrn_3050592
crossref_primary_10_1016_j_jbi_2009_09_004
crossref_primary_10_1007_s10589_010_9388_5
crossref_primary_10_4018_jssci_2010040104
crossref_primary_10_1007_s11081_017_9359_0
Cites_doi 10.1515/9781400873173
10.1080/10556789208805504
10.1137/S1052623493259215
10.1109/72.788646
10.7551/mitpress/1120.003.0052
10.1145/1015330.1015424
10.1109/ICPR.2000.906174
10.1137/S1052623494274313
10.1111/j.2517-6161.1996.tb02080.x
10.1162/08997660360581958
ContentType Journal Article
Copyright Springer Science + Business Media, Inc. 2005
Copyright_xml – notice: Springer Science + Business Media, Inc. 2005
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-005-1505-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer and Information Systems Abstracts
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 150
ExternalDocumentID 2157423261
10_1007_s10994_005_1505_9
Genre Feature
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z8Z
ZMTXR
3V.
7SC
7XB
8AL
8FD
8FK
AESKC
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c412t-ea24bb3a44b6a61f0c0e4a67c0390aa5558336ff21ed67bae539606c4bf624c23
IEDL.DBID M2P
ISICitedReferencesCount 188
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000233776200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Sun Nov 09 10:27:50 EST 2025
Tue Nov 04 19:10:33 EST 2025
Sat Nov 29 01:43:24 EST 2025
Tue Nov 18 22:22:56 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-3
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-ea24bb3a44b6a61f0c0e4a67c0390aa5558336ff21ed67bae539606c4bf624c23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10994-005-1505-9.pdf
PQID 757010864
PQPubID 54194
PageCount 22
ParticipantIDs proquest_miscellaneous_28949123
proquest_journals_757010864
crossref_citationtrail_10_1007_s10994_005_1505_9
crossref_primary_10_1007_s10994_005_1505_9
PublicationCentury 2000
PublicationDate 2005-11-01
PublicationDateYYYYMMDD 2005-11-01
PublicationDate_xml – month: 11
  year: 2005
  text: 2005-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Machine learning
PublicationYear 2005
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 1505_CR19
1505_CR18
J. Zhu (1505_CR30) 2004
B. Haasdonk (1505_CR11) 2004
A. Yuille (1505_CR29) 2003; 15
A. Ben-Tal (1505_CR2) 1997; 7
1505_CR15
1505_CR14
1505_CR13
1505_CR12
1505_CR4
1505_CR1
1505_CR5
K. P. Bennett (1505_CR3) 1992; 1
I. Guyon (1505_CR10) 2003; 3
T. Jebara (1505_CR16) 2000
T. Pham Dinh (1505_CR22) 1998; 8
P. S. Bradley (1505_CR6) 1998
G. H. John (1505_CR17) 1994
B. Schölkopf (1505_CR25) 2002
J. Weston (1505_CR27) 2003; 3
1505_CR21
1505_CR24
J. Weston (1505_CR28) 2001
R. T. Rockafellar (1505_CR23) 1970
J. Neumann (1505_CR20) 2004
R. Tibshirani (1505_CR26) 1996; 58
N. Cristianini (1505_CR8) 2002
O. Chapelle (1505_CR7) 1999; 10
R. Duda (1505_CR9) 2000
References_xml – volume-title: Convex analysis
  year: 1970
  ident: 1505_CR23
  doi: 10.1515/9781400873173
– ident: 1505_CR5
– volume: 1
  start-page: 23
  year: 1992
  ident: 1505_CR3
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556789208805504
– volume: 3
  start-page: 1157
  year: 2003
  ident: 1505_CR10
  publication-title: Journal of Machine Learning Research
– volume: 7
  start-page: 347
  issue: 2
  year: 1997
  ident: 1505_CR2
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623493259215
– ident: 1505_CR18
– start-page: 220
  volume-title: Pattern recognition, proc. of 26th DAGM symposium, Vol. 3175 of LNCS
  year: 2004
  ident: 1505_CR11
– start-page: 121
  volume-title: Proc. of the 11th international conference on machine learning
  year: 1994
  ident: 1505_CR17
– ident: 1505_CR14
– ident: 1505_CR21
– volume: 3
  start-page: 1439
  year: 2003
  ident: 1505_CR27
  publication-title: Journal of Machine Learning Research
– ident: 1505_CR12
– start-page: 212
  volume-title: Pattern recognition, proc. of 26th DAGM symposium, Vol. 3175 of LNCS
  year: 2004
  ident: 1505_CR20
– volume-title: Advances in neural information processing systems 16
  year: 2004
  ident: 1505_CR30
– volume: 10
  start-page: 1055
  issue: 5
  year: 1999
  ident: 1505_CR7
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.788646
– volume-title: Pattern classification
  year: 2000
  ident: 1505_CR9
– volume-title: Learning with kernels
  year: 2002
  ident: 1505_CR25
– ident: 1505_CR4
– ident: 1505_CR24
– start-page: 367
  volume-title: Advances in neural information processing systems 14
  year: 2002
  ident: 1505_CR8
  doi: 10.7551/mitpress/1120.003.0052
– ident: 1505_CR1
  doi: 10.1145/1015330.1015424
– ident: 1505_CR19
– ident: 1505_CR15
– start-page: 82
  volume-title: Proceedings of the 15th international conference on machine learning
  year: 1998
  ident: 1505_CR6
– ident: 1505_CR13
  doi: 10.1109/ICPR.2000.906174
– volume: 8
  start-page: 476
  issue: 2
  year: 1998
  ident: 1505_CR22
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623494274313
– start-page: 291
  volume-title: Proceedings of the 16th international conference on machine learning
  year: 2000
  ident: 1505_CR16
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 1505_CR26
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 15
  start-page: 915
  year: 2003
  ident: 1505_CR29
  publication-title: Neural Computation
  doi: 10.1162/08997660360581958
– start-page: 668
  volume-title: Advances in neural information processing systems 13
  year: 2001
  ident: 1505_CR28
SSID ssj0002686
Score 2.2953298
Snippet Feature selection is an important combinatorial optimisation problem in the context of supervised pattern classification. This paper presents four novel...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 129
SubjectTerms Optimization
Studies
Title Combined SVM-Based Feature Selection and Classification
URI https://www.proquest.com/docview/757010864
https://www.proquest.com/docview/28949123
Volume 61
WOSCitedRecordID wos000233776200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Link
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH8458GL3-L8mD14EoJZmybtSVQmgm4Up2N4KWmagCCdrpt_v3lpO_Gyi5cc2gbKe3kfyXv5_QAulOAmD0VAIpMJwmITkkjxkORYdIps_qAdmM74SQyH0WQSJ3VvTlm3VTY-0TnqfKrwjPxKhIIiKxC7_vwiSBqFxdWaQaMFbZvY9LCja-AnS0fsc0f0aO0oJBjIm6JmdXPOYeIiDKfNAUj8Nyz99cou1Nxv__Mnd2CrzjG9m2pR7MKaLvZgu-Fv8Gpz3gdhH9mNsc690XhAbm08yz1MCRcz7Y0cP45VmieL3HPUmdhU5PR4AK_3_Ze7B1ITKRDFev6caOmzLAskYxmXvGeooppJLhQNYiolQn4FATfG7-mci0zqMMCNjWKZ4T5TfnAI68W00EfgUV9afUpmDNcMW6SoVJHIBdURUlcHHaCNHFNVo4wj2cVH-ouPjKJPrehTFH0ad-ByOeWzgthY9fFJI_m0trYyXYq9A-fLt9ZMsPYhCz1dlKndV7LYRunjlfNPYLOCZsUjllNYn88W-gw21Pf8vZx1oX3bHybPXWg9CtJ1a82OSfhmx-fR-AeGsNhu
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Li9swEB7CttC9NH0tm03b6NBeCmIdWZbsQyl9hYQ8CGR32ZsqyxIUipPmsaU_qv-xGtlO2UtuOfRqW2A8n-ehGX0fwBsjhSsSGdPU5ZLyzCU0NSKhBTadUp8_2ECmczORs1l6e5vNW_CnOQuDY5WNTwyOulga3CO_lImMUBWIf1j9pCgahc3VRkGjQsXY_v7lK7bN-9EXb963jA2-Xn0e0lpUgBreZ1tqNeN5HmvOc6FF30UmslwLaSJf_WuN9FdxLJxjfVsImWubxJjkG547wbhBngPv8R9wJBbDSUE23zt-JoKwpP9vE4qJQ9NErU7qBQ5epP30OQfN7ofB-1EghLZB-z_7KE_gcZ1Dk48V6J9Cy5bPoN3oU5DaXT0H6S_5wt8WZHEzpZ98vC4Ipry7tSWLoP_jQUl0WZAgDYpDUwGnL-D6KK9_BiflsrTnQCKmPV41d05YjiNgkTapLGRkU5TmjjsQNXZTpmZRRzGPH-of_zOaWnlTKzS1yjrwbr9kVVGIHHq421ha1d5ko_Zm7kBvf9e7Aezt6NIudxvl62ae-Szk4uD6HjwaXk0najKajbtwWtHQ4nbSSzjZrnf2FTw0d9vvm_XrgGwC346Nmr_N2zDB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0hWqFeoC2tWGjBh3JBsvAmjp0cqgoKqyJgtRIUoV5cx7ElJJSF_aDqT-u_64yTbMWFG4dek1iyMuOZZ8_4PYBPTqtQZTrleSg1l0XIeO5UxisqOuWIH3wk07k608Nhfn1djJbgT3cXhtoqu5gYA3U1dnRGvq8zLUgVSO6HtitidDT4cnfPSUCKCq2dmkbjIaf-9y_cvU0_nxyhqXeTZHB8-fUbbwUGuJP9ZMa9TWRZplbKUlnVD8IJL63STqSFsJaosNJUhZD0faV0aX2WEuB3sgwqkY44DzD6v9C4xaRuwlH2Y5EEEhVFJnENZ5xARFdQbW7tRT5eogBF_MGLxynxcUaIaW6w9h__oNew2mJrdtAshjew5Ou3sNbpVrA2jK2DxkclouuKXVyd80PM4xUjKDyfeHYRdYHQWZmtKxYlQ6mZKvrvO_j-LNN_D8v1uPYbwERi0Y-tDEF5Sa1hwrpcV1r4nCS70x6IzobGtezqJPJxa_7xQpPZDZrdkNlN0YO9xZC7hlrkqY-3OqubNspMzcLkPdhZvMXwQDUfW_vxfGpwPy0LRCebT47fgRV0FnN2MjzdglcNOy2dMn2A5dlk7j_CS_cwu5lOtqOTM_j53E7zFyJkOa0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+SVM-Based+Feature+Selection+and+Classification&rft.jtitle=Machine+learning&rft.au=Neumann%2C+Julia&rft.au=Schn%C3%B6rr%2C+Christoph&rft.au=Steidl%2C+Gabriele&rft.date=2005-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=61&rft.issue=1-3&rft.spage=129&rft_id=info:doi/10.1007%2Fs10994-005-1505-9&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2157423261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon