Combined SVM-Based Feature Selection and Classification

Feature selection is an important combinatorial optimisation problem in the context of supervised pattern classification. This paper presents four novel continuous feature selection approaches directly minimising the classifier performance. In particular, we include linear and nonlinear Support Vect...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 61; číslo 1-3; s. 129 - 150
Hlavní autoři: Neumann, Julia, Schnörr, Christoph, Steidl, Gabriele
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Nature B.V 01.11.2005
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Feature selection is an important combinatorial optimisation problem in the context of supervised pattern classification. This paper presents four novel continuous feature selection approaches directly minimising the classifier performance. In particular, we include linear and nonlinear Support Vector Machine classifiers. The key ideas of our approaches are additional regularisation and embedded nonlinear feature selection. To solve our optimisation problems, we apply difference of convex functions programming which is a general framework for non-convex continuous optimisation. Experiments with artificial data and with various real-world problems including organ classification in computed tomography scans demonstrate that our methods accomplish the desired feature selection and classification performance simultaneously.[PUBLICATION ABSTRACT]
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-005-1505-9