Exponentiated Gradient Exploration for Active Learning

Active learning strategies respond to the costly labeling task in a supervised classification by selecting the most useful unlabeled examples in training a predictive model. Many conventional active learning algorithms focus on refining the decision boundary, rather than exploring new regions that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers (Basel) Jg. 5; H. 1; S. 1
1. Verfasser: Bouneffouf, Djallel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.03.2016
Schlagworte:
ISSN:2073-431X, 2073-431X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active learning strategies respond to the costly labeling task in a supervised classification by selecting the most useful unlabeled examples in training a predictive model. Many conventional active learning algorithms focus on refining the decision boundary, rather than exploring new regions that can be more informative. In this setting, we propose a sequential algorithm named exponentiated gradient (EG)-active that can improve any active learning algorithm by an optimal random exploration. Experimental results show a statistically-significant and appreciable improvement in the performance of our new approach over the existing active feedback methods.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-431X
2073-431X
DOI:10.3390/computers5010001