Exponentiated Gradient Exploration for Active Learning

Active learning strategies respond to the costly labeling task in a supervised classification by selecting the most useful unlabeled examples in training a predictive model. Many conventional active learning algorithms focus on refining the decision boundary, rather than exploring new regions that c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers (Basel) Ročník 5; číslo 1; s. 1
Hlavný autor: Bouneffouf, Djallel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.03.2016
Predmet:
ISSN:2073-431X, 2073-431X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Active learning strategies respond to the costly labeling task in a supervised classification by selecting the most useful unlabeled examples in training a predictive model. Many conventional active learning algorithms focus on refining the decision boundary, rather than exploring new regions that can be more informative. In this setting, we propose a sequential algorithm named exponentiated gradient (EG)-active that can improve any active learning algorithm by an optimal random exploration. Experimental results show a statistically-significant and appreciable improvement in the performance of our new approach over the existing active feedback methods.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-431X
2073-431X
DOI:10.3390/computers5010001