Optimizing ex vivo penetration tests via quantitative confocal Raman spectroscopy: Impact of incubation time, skin hydration, surfactant treatment and UVA irradiation on caffeine distribution

[Display omitted] Ex vivo penetration tests are important tools in cosmetic and pharmaceutical research. However, variability of experimental setups is challenging when reviewing literature. Different skin models, pre-treatments and experimental parameters render comparison difficult. Thus, our aim...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pharmaceutics Vol. 667; no. Pt B; p. 124932
Main Authors: Steiner, Katja, Hübel, Pia, Srndic, Azra, Klang, Victoria
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 25.12.2024
Subjects:
ISSN:0378-5173, 1873-3476, 1873-3476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] Ex vivo penetration tests are important tools in cosmetic and pharmaceutical research. However, variability of experimental setups is challenging when reviewing literature. Different skin models, pre-treatments and experimental parameters render comparison difficult. Thus, our aim was to conduct ex vivo penetration tests using caffeine in different setups with varying incubation conditions (ambient vs. Franz cells, infinite vs. finite dose). Additionally, the impact of skin pre-treatment with different aggressors (surfactants, UVA irradiation) should be considered. Possible synergistic barrier damage of surfactants and UVA irradiation should be explored. Analysis was conducted using quantitative confocal Raman spectroscopy. Results showed that incubation time and extensive hydration (20 h in Franz cells) had the greatest impact on penetration behavior. Additional irradiation after pre-treatment with oil-in-water nanoemulsions showed no strong impact on caffeine penetration in general, irrespective of surfactant type. However, in case of sodium lauryl ether sulfate, a trend towards enhanced values was observed due to irradiation (1.3-fold). This suggests cumulative skin barrier damage of irritant surfactants and UVA irradiation, potentially due to stratum corneum alterations. Further studies using different irradiation regimens are planned to confirm this hypothesis.
AbstractList [Display omitted] Ex vivo penetration tests are important tools in cosmetic and pharmaceutical research. However, variability of experimental setups is challenging when reviewing literature. Different skin models, pre-treatments and experimental parameters render comparison difficult. Thus, our aim was to conduct ex vivo penetration tests using caffeine in different setups with varying incubation conditions (ambient vs. Franz cells, infinite vs. finite dose). Additionally, the impact of skin pre-treatment with different aggressors (surfactants, UVA irradiation) should be considered. Possible synergistic barrier damage of surfactants and UVA irradiation should be explored. Analysis was conducted using quantitative confocal Raman spectroscopy. Results showed that incubation time and extensive hydration (20 h in Franz cells) had the greatest impact on penetration behavior. Additional irradiation after pre-treatment with oil-in-water nanoemulsions showed no strong impact on caffeine penetration in general, irrespective of surfactant type. However, in case of sodium lauryl ether sulfate, a trend towards enhanced values was observed due to irradiation (1.3-fold). This suggests cumulative skin barrier damage of irritant surfactants and UVA irradiation, potentially due to stratum corneum alterations. Further studies using different irradiation regimens are planned to confirm this hypothesis.
Ex vivo penetration tests are important tools in cosmetic and pharmaceutical research. However, variability of experimental setups is challenging when reviewing literature. Different skin models, pre-treatments and experimental parameters render comparison difficult. Thus, our aim was to conduct ex vivo penetration tests using caffeine in different setups with varying incubation conditions (ambient vs. Franz cells, infinite vs. finite dose). Additionally, the impact of skin pre-treatment with different aggressors (surfactants, UVA irradiation) should be considered. Possible synergistic barrier damage of surfactants and UVA irradiation should be explored. Analysis was conducted using quantitative confocal Raman spectroscopy. Results showed that incubation time and extensive hydration (20 h in Franz cells) had the greatest impact on penetration behavior. Additional irradiation after pre-treatment with oil-in-water nanoemulsions showed no strong impact on caffeine penetration in general, irrespective of surfactant type. However, in case of sodium lauryl ether sulfate, a trend towards enhanced values was observed due to irradiation (1.3-fold). This suggests cumulative skin barrier damage of irritant surfactants and UVA irradiation, potentially due to stratum corneum alterations. Further studies using different irradiation regimens are planned to confirm this hypothesis.Ex vivo penetration tests are important tools in cosmetic and pharmaceutical research. However, variability of experimental setups is challenging when reviewing literature. Different skin models, pre-treatments and experimental parameters render comparison difficult. Thus, our aim was to conduct ex vivo penetration tests using caffeine in different setups with varying incubation conditions (ambient vs. Franz cells, infinite vs. finite dose). Additionally, the impact of skin pre-treatment with different aggressors (surfactants, UVA irradiation) should be considered. Possible synergistic barrier damage of surfactants and UVA irradiation should be explored. Analysis was conducted using quantitative confocal Raman spectroscopy. Results showed that incubation time and extensive hydration (20 h in Franz cells) had the greatest impact on penetration behavior. Additional irradiation after pre-treatment with oil-in-water nanoemulsions showed no strong impact on caffeine penetration in general, irrespective of surfactant type. However, in case of sodium lauryl ether sulfate, a trend towards enhanced values was observed due to irradiation (1.3-fold). This suggests cumulative skin barrier damage of irritant surfactants and UVA irradiation, potentially due to stratum corneum alterations. Further studies using different irradiation regimens are planned to confirm this hypothesis.
Ex vivo penetration tests are important tools in cosmetic and pharmaceutical research. However, variability of experimental setups is challenging when reviewing literature. Different skin models, pre-treatments and experimental parameters render comparison difficult. Thus, our aim was to conduct ex vivo penetration tests using caffeine in different setups with varying incubation conditions (ambient vs. Franz cells, infinite vs. finite dose). Additionally, the impact of skin pre-treatment with different aggressors (surfactants, UVA irradiation) should be considered. Possible synergistic barrier damage of surfactants and UVA irradiation should be explored. Analysis was conducted using quantitative confocal Raman spectroscopy. Results showed that incubation time and extensive hydration (20 h in Franz cells) had the greatest impact on penetration behavior. Additional irradiation after pre-treatment with oil-in-water nanoemulsions showed no strong impact on caffeine penetration in general, irrespective of surfactant type. However, in case of sodium lauryl ether sulfate, a trend towards enhanced values was observed due to irradiation (1.3-fold). This suggests cumulative skin barrier damage of irritant surfactants and UVA irradiation, potentially due to stratum corneum alterations. Further studies using different irradiation regimens are planned to confirm this hypothesis.
ArticleNumber 124932
Author Steiner, Katja
Klang, Victoria
Hübel, Pia
Srndic, Azra
Author_xml – sequence: 1
  givenname: Katja
  surname: Steiner
  fullname: Steiner, Katja
– sequence: 2
  givenname: Pia
  surname: Hübel
  fullname: Hübel, Pia
– sequence: 3
  givenname: Azra
  surname: Srndic
  fullname: Srndic, Azra
– sequence: 4
  givenname: Victoria
  surname: Klang
  fullname: Klang, Victoria
  email: victoria.klang@univie.ac.at
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39528143$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFRwB5yYIZ7DiJJ7BAVcVPpUqVEGVr3Tg39A4TO7WdEcPL8Wp4yMCCTSVL9r0-5yzOd8ZOnHfI2HMpVlLI-vVmRZvxDsKwKkRRrmRRNqp4xBZyrdVSlbo-YQuh9HpZSa1O2VmMGyFEXUj1hJ2qpirWslQL9utmTDTQT3LfOP7gO9p5PqLDFCCRdzxhTDGvgd9P4BKlvN4ht9713sKWf4YBHI8j2hR8tH7cv-FXwwg2cd9zcnZqj0E04Csev5Pjd_tuTs_zFPqszck8BYQ0YH6B6_jt1wtOIUBHsz0fC32P5JB3FFOgdjp8PGWPe9hGfHa8z9nth_dfLj8tr28-Xl1eXC9tKYu0bEWh6h5BwrouK9tI1IBYS6k6pW3faNlWLWLRWN12IARoVZYKOqirXoJu1Dl7OeeOwd9PuRQzULS43YJDP0WjZLHWVZVNWfriKJ3aATszBhog7M3f0rOgmgU2VxYD9v8kUpgDXLMxR7jmANfMcLPv7X8--4eHd5kWbR90v5vdmGvaEQYTLaGz2FHI9Ezn6YGE3yxyyVI
CitedBy_id crossref_primary_10_3390_molecules30010167
crossref_primary_10_1016_j_cocis_2025_101932
Cites_doi 10.1016/j.colsurfa.2015.01.019
10.1016/j.addr.2015.04.002
10.1111/ics.12139
10.1111/j.1600-0846.2006.00179.x
10.3390/membranes12030251
10.1073/pnas.1206851109
10.1016/j.cofs.2015.07.008
10.1016/j.ijpharm.2018.08.007
10.1111/srt.12709
10.1111/j.1468-3083.2009.03349.x
10.1016/j.ijpharm.2019.05.078
10.1111/j.1396-0296.2004.04S1002.x
10.3390/pharmaceutics12121235
10.1016/j.ijpharm.2020.119209
10.1111/srt.12968
10.1007/s00253-022-12302-5
10.1007/s00403-018-1854-4
10.1159/000475472
10.1007/978-3-030-16573-4_6
10.3390/molecules27062010
10.1046/j.1523-1747.2001.01258.x
10.1016/j.ijpharm.2014.08.058
10.1016/j.ijpharm.2021.121055
10.3390/pharmaceutics13040436
10.1007/s11095-022-03245-7
10.1111/exd.14645
10.1016/j.ejpb.2012.11.017
10.3390/chemosensors9090262
10.3390/pharmaceutics12020152
10.1111/ics.12042
10.1159/000247822
10.1111/1523-1747.ep12328031
10.1111/1523-1747.ep12471711
10.1034/j.1600-0536.2003.480105.x
10.1002/ejlt.201400219
10.1016/j.ijpharm.2024.123903
10.1016/j.jconrel.2016.06.017
10.1016/j.xphs.2019.06.030
10.1016/j.ijpharm.2011.07.025
10.1016/j.ejpb.2021.04.027
10.1016/j.mattod.2017.11.002
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ijpharm.2024.124932
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-3476
ExternalDocumentID 39528143
10_1016_j_ijpharm_2024_124932
S0378517324011669
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSP
SSZ
T5K
TEORI
~02
~G-
.GJ
29J
3O-
53G
5VS
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMT
HVGLF
HZ~
R2-
SPT
WUQ
ZXP
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c412t-b0236fea1a8645c91e7aee6113d37cf971b5bee29c7bda00a73443ada65f1a793
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001359904200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-5173
1873-3476
IngestDate Thu Oct 02 07:55:57 EDT 2025
Thu Apr 03 07:03:53 EDT 2025
Tue Nov 18 19:37:04 EST 2025
Sat Nov 29 02:36:47 EST 2025
Sat Feb 08 15:52:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords UVA
SLES
UV
CRS
quantitative CRS
Surfactant
SC
Porcine ear skin
Penetration
PC
PE
NE
Confocal Raman spectroscopy
LPC
PS80
Caffeine
HLB
MCT
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-b0236fea1a8645c91e7aee6113d37cf971b5bee29c7bda00a73443ada65f1a793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.ijpharm.2024.124932
PMID 39528143
PQID 3128755443
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3128755443
pubmed_primary_39528143
crossref_primary_10_1016_j_ijpharm_2024_124932
crossref_citationtrail_10_1016_j_ijpharm_2024_124932
elsevier_sciencedirect_doi_10_1016_j_ijpharm_2024_124932
PublicationCentury 2000
PublicationDate 2024-12-25
PublicationDateYYYYMMDD 2024-12-25
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-25
  day: 25
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of pharmaceutics
PublicationTitleAlternate Int J Pharm
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jacobi, Kaiser, Toll, Mangelsdorf, Audring, Otberg, Sterry, Lademann (b0090) 2007; 13
Vater, Hlawaty, Werdenits, Cichoń, Klang, Elbe-Bürger, Wirth, Valenta (b0225) 2020; 580
Sriram, Alberti, Dancik, Wu, Wu, Feng, Ramasamy, Bigliardi, Bigliardi-Qi, Wang (b0190) 2018; 21
Wolf, Klang, Stojcic, Fuchs, Wolzt, Valenta (b0235) 2018; 549
Caspers, Nico, Bakker Schut, De Sterke, Pudney, Curto, Illand, Puppels (b0045) 2019; 1
Ozturk, McClements (b0175) 2016; 7
Biniek, Levi, Dauskardt (b0035) 2012; 109
Hoppel, Ettl, Holper, Valenta (b0080) 2014; 475
Löffler, Happle (b0125) 2003; 48
Bhattacharjee (b0025) 2016; 235
Jung, Namjoshi, Mohammed, Grice, Benson, Raney, Roberts, Windbergs (b0100) 2022; 39
Corazza, Lauriola, Zappaterra, Bianchi, Virgili (b0050) 2010
Mijaljica, Spada, Harrison (b0150) 2022; 27
Lunter (b0130) 2016; 29
Otto, van Hoogevest, Syrowatka, Heinl, Neubert (b0170) 2020; 75
Vater, Apanovic, Riethmüller, Litschauer, Wolzt, Valenta, Klang (b0230) 2021; 13
Ananthapadmanabhan, Mukherjee, Chandar (b0020) 2013
Lunter, Klang, Kocsis, Varga-Medveczky, Berkó, Erdő (b0135) 2022
Binder, Mazál, Petz, Klang, Valenta (b0030) 2019; 25
Franzen, Selzer, Fluhr, Schaefer, Windbergs (b0070) 2013; 84
Froebe, Simion, Rhein, Cagan, Kligman (b0075) 1990; 181
Ema (b0060) 2015
McAuliffe, Blank (b0145) 1991; 96
Neupane, R., Boddu, S.H.S., Renukuntla, J., Babu, R.J. and Tiwari, A.K. (2020) ‘Alternatives to biological skin in permeation studies: Current trends and possibilities’, Pharmaceutics, p. 152. DOI: 10.3390/pharmaceutics12020152.
Adu, Twigg, Naughton, Marchant, Banat (b0005) 2023; 107
Liu, Krombholz, Lunter (b0115) 2021; 607
Franzen, L. and Windbergs, M. (2015) ‘Applications of Raman spectroscopy in skin research - From skin physiology and diagnosis up to risk assessment and dermal drug delivery’, Advanced Drug Delivery Reviews, pp. 91–104. DOI: 10.1016/j.addr.2015.04.002.
Jacques-Jamin, Duplan, Rothe, Vaillant, Eilstein, Grégoire, Cubberley, Lange, Ellison, Klaric, Hewitt, Schepky (b0095) 2017; 30
Drescher, van Hoogevest (b0055) 2020; 12
Seweryn (b0185) 2018
Alonso, Carrer, Barba, Coderch (b0010) 2018; 310
Liu, Lunter (b0120) 2021; 166
Orlando, Franceschini, Muscas, Pidkova, Bartoli, Rovere, Tagliaferro (b0165) 2021; 9
Steiner, Schmolz, Hoang, Wolf, Seiser, Elbe-Bürger, Klang (b0195) 2024; 653
Levintova, Plakogiannis, Bellantone (b0110) 2011; 419
Morris, Ananthapadmanabhan, Kasting (b0155) 2019; 108
Van Hal, Jeremiasse, Junginger, Spies, Bouwstra (b0205) 1996; 106
Ananthapadmanabhan, Moore, Subramanyan, Misra, Meyer (b0015) 2004
Mastova, Selyutina, Evseenko, Polyakov (b0140) 2022; 12
van Hoogevest, Wendel (b0215) 2014; 116
van Hoogevest, P. and Fahr, A. (2019) ‘Phospholipids in Cosmetic Carriers’, in J. Cornier, C. Keck, and M. van de Voorde (eds) Nanocosmetics. Springer, Cham, pp. 95–140. DOI: 10.1007/978-3-030-16573-4_6.
Caspers, Lucassen, Carter, Bruining, Puppels (b0040) 2001; 116
Purohit, Chandar, Vilinska, Ananthapadmanabhan, Somasundaran (b0180) 2014; 36
Iliopoulos, Caspers, Puppels, Lane (b0085) 2020; 12
Lémery, Briançon, Chevalier, Bordes, Oddos, Gohier, Bolzinger (b0105) 2015; 469
Supe, Takudage (b0200) 2021
Vater, Adamovic, Ruttensteiner, Steiner, Pooja, Klang, Elbe-Bürger, Wirth, Valenta (b0220) 2019; 20
Morris (10.1016/j.ijpharm.2024.124932_b0155) 2019; 108
Van Hal (10.1016/j.ijpharm.2024.124932_b0205) 1996; 106
Steiner (10.1016/j.ijpharm.2024.124932_b0195) 2024; 653
Bhattacharjee (10.1016/j.ijpharm.2024.124932_b0025) 2016; 235
Hoppel (10.1016/j.ijpharm.2024.124932_b0080) 2014; 475
Sriram (10.1016/j.ijpharm.2024.124932_b0190) 2018; 21
Ozturk (10.1016/j.ijpharm.2024.124932_b0175) 2016; 7
Caspers (10.1016/j.ijpharm.2024.124932_b0040) 2001; 116
Ema (10.1016/j.ijpharm.2024.124932_b0060) 2015
McAuliffe (10.1016/j.ijpharm.2024.124932_b0145) 1991; 96
Ananthapadmanabhan (10.1016/j.ijpharm.2024.124932_b0015) 2004
Jacques-Jamin (10.1016/j.ijpharm.2024.124932_b0095) 2017; 30
Supe (10.1016/j.ijpharm.2024.124932_b0200) 2021
Lémery (10.1016/j.ijpharm.2024.124932_b0105) 2015; 469
Ananthapadmanabhan (10.1016/j.ijpharm.2024.124932_b0020) 2013
10.1016/j.ijpharm.2024.124932_b0065
Liu (10.1016/j.ijpharm.2024.124932_b0120) 2021; 166
Vater (10.1016/j.ijpharm.2024.124932_b0220) 2019; 20
Corazza (10.1016/j.ijpharm.2024.124932_b0050) 2010
Lunter (10.1016/j.ijpharm.2024.124932_b0130) 2016; 29
Löffler (10.1016/j.ijpharm.2024.124932_b0125) 2003; 48
10.1016/j.ijpharm.2024.124932_b0160
Franzen (10.1016/j.ijpharm.2024.124932_b0070) 2013; 84
Vater (10.1016/j.ijpharm.2024.124932_b0225) 2020; 580
Drescher (10.1016/j.ijpharm.2024.124932_b0055) 2020; 12
Liu (10.1016/j.ijpharm.2024.124932_b0115) 2021; 607
van Hoogevest (10.1016/j.ijpharm.2024.124932_b0215) 2014; 116
Alonso (10.1016/j.ijpharm.2024.124932_b0010) 2018; 310
Orlando (10.1016/j.ijpharm.2024.124932_b0165) 2021; 9
Adu (10.1016/j.ijpharm.2024.124932_b0005) 2023; 107
Jung (10.1016/j.ijpharm.2024.124932_b0100) 2022; 39
Wolf (10.1016/j.ijpharm.2024.124932_b0235) 2018; 549
Vater (10.1016/j.ijpharm.2024.124932_b0230) 2021; 13
Iliopoulos (10.1016/j.ijpharm.2024.124932_b0085) 2020; 12
Caspers (10.1016/j.ijpharm.2024.124932_b0045) 2019; 1
Seweryn (10.1016/j.ijpharm.2024.124932_b0185) 2018
Mastova (10.1016/j.ijpharm.2024.124932_b0140) 2022; 12
10.1016/j.ijpharm.2024.124932_b0210
Lunter (10.1016/j.ijpharm.2024.124932_b0135) 2022
Binder (10.1016/j.ijpharm.2024.124932_b0030) 2019; 25
Otto (10.1016/j.ijpharm.2024.124932_b0170) 2020; 75
Jacobi (10.1016/j.ijpharm.2024.124932_b0090) 2007; 13
Biniek (10.1016/j.ijpharm.2024.124932_b0035) 2012; 109
Levintova (10.1016/j.ijpharm.2024.124932_b0110) 2011; 419
Froebe (10.1016/j.ijpharm.2024.124932_b0075) 1990; 181
Mijaljica (10.1016/j.ijpharm.2024.124932_b0150) 2022; 27
Purohit (10.1016/j.ijpharm.2024.124932_b0180) 2014; 36
References_xml – start-page: 16
  year: 2004
  end-page: 25
  ident: b0015
  article-title: Cleansing without compromise: The impact of cleansers on the skin barrier and the technology of mild cleansing
  publication-title: Dermatol. Ther.
– volume: 108
  start-page: 3640
  year: 2019
  end-page: 3648
  ident: b0155
  article-title: Anionic Surfactant-Induced Changes in Skin Permeability
  publication-title: J. Pharm. Sci.
– volume: 12
  start-page: 1235
  year: 2020
  end-page: 1261
  ident: b0055
  article-title: The phospholipid research center: Current research in phospholipids and their use in drug delivery
  publication-title: Pharmaceutics
– volume: 48
  start-page: 26
  year: 2003
  end-page: 32
  ident: b0125
  article-title: Profile of irritant patch testing with detergents: sodium lauryl sulfate, sodium laureth sulfate and alkyl polyglucoside
  publication-title: Contact Dermatitis
– volume: 653
  year: 2024
  ident: b0195
  article-title: Surfactants for stabilization of dermal emulsions and their skin compatibility under UVA irradiation: Diacyl phospholipids and polysorbate 80 result in high viability rates of primary human skin cells
  publication-title: Int. J. Pharm.
– volume: 12
  start-page: 251
  year: 2022
  ident: b0140
  article-title: Photoinduced Oxidation of Lipid Membranes in the Presence of the Nonsteroidal Anti-Inflammatory Drug Ketoprofen
  publication-title: Membranes
– start-page: 1
  year: 2010
  end-page: 6
  ident: b0050
  article-title: Surfactants, skin cleansing protagonists
  publication-title: J. Eur. Acad. Dermatol. Venereol.
– volume: 235
  start-page: 337
  year: 2016
  end-page: 351
  ident: b0025
  article-title: DLS and zeta potential - What they are and what they are not?
  publication-title: J. Control. Release
– reference: van Hoogevest, P. and Fahr, A. (2019) ‘Phospholipids in Cosmetic Carriers’, in J. Cornier, C. Keck, and M. van de Voorde (eds) Nanocosmetics. Springer, Cham, pp. 95–140. DOI: 10.1007/978-3-030-16573-4_6.
– volume: 116
  start-page: 434
  year: 2001
  end-page: 442
  ident: b0040
  article-title: In vivo confocal raman microspectroscopy of the skin: Noninvasive determination of molecular concentration profiles
  publication-title: J, Invest. Dermatol.
– volume: 27
  start-page: 2010
  year: 2022
  ident: b0150
  article-title: Skin Cleansing without or with Compromise: Soaps and Syndets
  publication-title: Molecules
– volume: 475
  start-page: 156
  year: 2014
  end-page: 162
  ident: b0080
  article-title: Influence of the composition of monoacyl phosphatidylcholine based microemulsions on the dermal delivery of flufenamic acid
  publication-title: Int. J. Pharm.
– start-page: 242
  year: 2018
  end-page: 255
  ident: b0185
  article-title: Interactions between surfactants and the skin – Theory and practice
  publication-title: Advances in Colloid and Interface Science
– volume: 30
  year: 2017
  ident: b0095
  article-title: Comparison of the Skin Penetration of 3 Metabolically Stable Chemicals Using Fresh and Frozen Human Skin
  publication-title: Skin Pharmacol. Physiol.
– volume: 13
  start-page: 19
  year: 2007
  end-page: 24
  ident: b0090
  article-title: Porcine ear skin: an in vitro model for human skin
  publication-title: Skin Res. Technol.
– volume: 106
  start-page: 89
  year: 1996
  end-page: 95
  ident: b0205
  article-title: Structure of fully hydrated human stratum corneum: A freeze-fracture electron microscopy study
  publication-title: J, Invest. Dermatol.
– year: 2015
  ident: b0060
  article-title: ICH Guidance S10 on Photosafety Evaluation of Pharmaceuticals
– volume: 20
  start-page: 383
  year: 2019
  end-page: 390
  ident: b0220
  article-title: Cytotoxicity of lecithin-based nanoemulsions on human skin cells and ex vivo skin permeation: Comparison to conventional surfactant types
  publication-title: Int. J. Pharm.
– volume: 39
  start-page: 935
  year: 2022
  end-page: 948
  ident: b0100
  article-title: Application of Confocal Raman Microscopy for the Characterization of Topical Semisolid Formulations and their Penetration into Human Skin Ex Vivo
  publication-title: Pharm. Res.
– volume: 549
  start-page: 343
  year: 2018
  end-page: 351
  ident: b0235
  article-title: NLC versus nanoemulsions: Effect on physiological skin parameters during regular in vivo application and impact on drug penetration
  publication-title: Int. J. Pharm.
– volume: 96
  start-page: 758
  year: 1991
  end-page: 762
  ident: b0145
  article-title: Effects of UVA (320–400 nm) on the barrier characteristics of the skin
  publication-title: J, Invest. Dermatol.
– volume: 13
  start-page: 436
  year: 2021
  ident: b0230
  article-title: Changes in skin barrier function after repeated exposition to phospholipid-based surfactants and sodium dodecyl sulfate in vivo and corneocyte surface analysis by atomic force microscopy
  publication-title: Pharmaceutics
– volume: 107
  start-page: 137
  year: 2023
  end-page: 152
  ident: b0005
  article-title: Characterisation of cytotoxicity and immunomodulatory effects of glycolipid biosurfactants on human keratinocytes
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 607
  year: 2021
  ident: b0115
  article-title: Critical parameters for accurate monitoring of caffeine penetration in porcine skin using confocal Raman spectroscopy
  publication-title: Int. J. Pharm.
– volume: 21
  start-page: 326
  year: 2018
  end-page: 340
  ident: b0190
  article-title: Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function
  publication-title: Mater. Today
– volume: 109
  start-page: 17111
  year: 2012
  end-page: 17116
  ident: b0035
  article-title: Solar UV radiation reduces the barrier function of human skin
  publication-title: PNAS
– volume: 419
  start-page: 96
  year: 2011
  end-page: 106
  ident: b0110
  article-title: An improved in vitro method for measuring skin permeability that controls excess hydration of skin using modified Franz diffusion cells
  publication-title: Int. J. Pharm.
– volume: 12
  start-page: 887
  year: 2020
  ident: b0085
  article-title: ‘Franz Cell Diffusion Testing and Quantitative Confocal Raman Spectroscopy
  publication-title: In Vitro-in Vivo Correlation’, Pharmaceutics
– volume: 310
  start-page: 657
  year: 2018
  end-page: 664
  ident: b0010
  article-title: Caffeine delivery in porcine skin: a confocal Raman study
  publication-title: Arch. Dermatol. Res.
– volume: 166
  start-page: 1
  year: 2021
  end-page: 9
  ident: b0120
  article-title: Profiling skin penetration using PEGylated emulsifiers as penetration enhancers via confocal Raman spectroscopy and fluorescence spectroscopy
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 9
  start-page: 262
  year: 2021
  ident: b0165
  article-title: A comprehensive review on Raman spectroscopy applications
  publication-title: Chemosensors
– volume: 25
  start-page: 725
  year: 2019
  end-page: 734
  ident: b0030
  article-title: The role of viscosity on skin penetration from cellulose ether-based hydrogels
  publication-title: Skin Res. Technol.
– volume: 1
  year: 2019
  ident: b0045
  article-title: Method to quantify the in vivo skin penetration of topically applied materials based on confocal Raman spectroscopy
  publication-title: Translational Biophotonics
– volume: 7
  start-page: 1
  year: 2016
  end-page: 6
  ident: b0175
  article-title: Progress in natural emulsifiers for utilization in food emulsions
  publication-title: Curr. Opin. Food Sci.
– reference: Franzen, L. and Windbergs, M. (2015) ‘Applications of Raman spectroscopy in skin research - From skin physiology and diagnosis up to risk assessment and dermal drug delivery’, Advanced Drug Delivery Reviews, pp. 91–104. DOI: 10.1016/j.addr.2015.04.002.
– volume: 580
  start-page: 119
  year: 2020
  end-page: 209
  ident: b0225
  article-title: Effects of lecithin-based nanoemulsions on skin: Short-time cytotoxicity MTT and BrdU studies, skin penetration of surfactants and additives and the delivery of curcumin
  publication-title: Int. J. Pharm.
– volume: 75
  start-page: 365
  year: 2020
  end-page: 370
  ident: b0170
  article-title: Assessment of the applicability of HLB values for natural phospholipid emulsifiers for preparation of stable emulsions
  publication-title: Pharmazie
– volume: 36
  start-page: 379
  year: 2014
  end-page: 385
  ident: b0180
  article-title: Effect of mixed surfactants on stratum corneum: A drying stress and Raman spectroscopy study
  publication-title: Int. J. Cosmet. Sci.
– volume: 116
  start-page: 1088
  year: 2014
  end-page: 1107
  ident: b0215
  article-title: The use of natural and synthetic phospholipids as pharmaceutical excipients
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 469
  start-page: 166
  year: 2015
  end-page: 179
  ident: b0105
  article-title: Skin toxicity of surfactants: Structure/toxicity relationships
  publication-title: Colloids Surf A Physicochem Eng Asp
– start-page: 337
  year: 2013
  end-page: 345
  ident: b0020
  article-title: Stratum corneum fatty acids: Their critical role in preserving barrier integrity during cleansing
  publication-title: Int. J. Cosmet. Sci.
– volume: 84
  start-page: 437
  year: 2013
  end-page: 444
  ident: b0070
  article-title: Towards drug quantification in human skin with confocal Raman microscopy
  publication-title: Eur. J. Pharm. Biopharm.
– reference: Neupane, R., Boddu, S.H.S., Renukuntla, J., Babu, R.J. and Tiwari, A.K. (2020) ‘Alternatives to biological skin in permeation studies: Current trends and possibilities’, Pharmaceutics, p. 152. DOI: 10.3390/pharmaceutics12020152.
– volume: 181
  start-page: 277
  year: 1990
  end-page: 283
  ident: b0075
  article-title: Stratum corneum lipid removal by surfactants: Relation to in vivo irritation
  publication-title: Dermatology
– start-page: 299
  year: 2021
  end-page: 308
  ident: b0200
  article-title: Methods for evaluating penetration of drug into the skin: A review
  publication-title: Skin Res. Technol.
– start-page: 1311
  year: 2022
  end-page: 1329
  ident: b0135
  article-title: Novel aspects of Raman spectroscopy in skin research
  publication-title: Exp. Dermatol.
– volume: 29
  start-page: 92
  year: 2016
  end-page: 101
  ident: b0130
  article-title: ‘How confocal is confocal raman microspectroscopy on the skin?
  publication-title: Impact of Microscope Configuration and Sample Preparation on Penetration Depth Profiles’, Skin Pharmacology and Physiology
– volume: 469
  start-page: 166
  year: 2015
  ident: 10.1016/j.ijpharm.2024.124932_b0105
  article-title: Skin toxicity of surfactants: Structure/toxicity relationships
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2015.01.019
– ident: 10.1016/j.ijpharm.2024.124932_b0065
  doi: 10.1016/j.addr.2015.04.002
– volume: 36
  start-page: 379
  year: 2014
  ident: 10.1016/j.ijpharm.2024.124932_b0180
  article-title: Effect of mixed surfactants on stratum corneum: A drying stress and Raman spectroscopy study
  publication-title: Int. J. Cosmet. Sci.
  doi: 10.1111/ics.12139
– volume: 13
  start-page: 19
  issue: 1
  year: 2007
  ident: 10.1016/j.ijpharm.2024.124932_b0090
  article-title: Porcine ear skin: an in vitro model for human skin
  publication-title: Skin Res. Technol.
  doi: 10.1111/j.1600-0846.2006.00179.x
– volume: 12
  start-page: 251
  issue: 3
  year: 2022
  ident: 10.1016/j.ijpharm.2024.124932_b0140
  article-title: Photoinduced Oxidation of Lipid Membranes in the Presence of the Nonsteroidal Anti-Inflammatory Drug Ketoprofen
  publication-title: Membranes
  doi: 10.3390/membranes12030251
– volume: 109
  start-page: 17111
  issue: 42
  year: 2012
  ident: 10.1016/j.ijpharm.2024.124932_b0035
  article-title: Solar UV radiation reduces the barrier function of human skin
  publication-title: PNAS
  doi: 10.1073/pnas.1206851109
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijpharm.2024.124932_b0175
  article-title: Progress in natural emulsifiers for utilization in food emulsions
  publication-title: Curr. Opin. Food Sci.
  doi: 10.1016/j.cofs.2015.07.008
– volume: 549
  start-page: 343
  issue: 1–2
  year: 2018
  ident: 10.1016/j.ijpharm.2024.124932_b0235
  article-title: NLC versus nanoemulsions: Effect on physiological skin parameters during regular in vivo application and impact on drug penetration
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.08.007
– volume: 25
  start-page: 725
  issue: 5
  year: 2019
  ident: 10.1016/j.ijpharm.2024.124932_b0030
  article-title: The role of viscosity on skin penetration from cellulose ether-based hydrogels
  publication-title: Skin Res. Technol.
  doi: 10.1111/srt.12709
– volume: 75
  start-page: 365
  issue: 8
  year: 2020
  ident: 10.1016/j.ijpharm.2024.124932_b0170
  article-title: Assessment of the applicability of HLB values for natural phospholipid emulsifiers for preparation of stable emulsions
  publication-title: Pharmazie
– start-page: 1
  year: 2010
  ident: 10.1016/j.ijpharm.2024.124932_b0050
  article-title: Surfactants, skin cleansing protagonists
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/j.1468-3083.2009.03349.x
– volume: 20
  start-page: 383
  issue: 566
  year: 2019
  ident: 10.1016/j.ijpharm.2024.124932_b0220
  article-title: Cytotoxicity of lecithin-based nanoemulsions on human skin cells and ex vivo skin permeation: Comparison to conventional surfactant types
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.05.078
– start-page: 16
  year: 2004
  ident: 10.1016/j.ijpharm.2024.124932_b0015
  article-title: Cleansing without compromise: The impact of cleansers on the skin barrier and the technology of mild cleansing
  publication-title: Dermatol. Ther.
  doi: 10.1111/j.1396-0296.2004.04S1002.x
– volume: 12
  start-page: 1235
  year: 2020
  ident: 10.1016/j.ijpharm.2024.124932_b0055
  article-title: The phospholipid research center: Current research in phospholipids and their use in drug delivery
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12121235
– year: 2015
  ident: 10.1016/j.ijpharm.2024.124932_b0060
– volume: 580
  start-page: 119
  year: 2020
  ident: 10.1016/j.ijpharm.2024.124932_b0225
  article-title: Effects of lecithin-based nanoemulsions on skin: Short-time cytotoxicity MTT and BrdU studies, skin penetration of surfactants and additives and the delivery of curcumin
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119209
– start-page: 299
  year: 2021
  ident: 10.1016/j.ijpharm.2024.124932_b0200
  article-title: Methods for evaluating penetration of drug into the skin: A review
  publication-title: Skin Res. Technol.
  doi: 10.1111/srt.12968
– volume: 29
  start-page: 92
  year: 2016
  ident: 10.1016/j.ijpharm.2024.124932_b0130
  article-title: ‘How confocal is confocal raman microspectroscopy on the skin?
  publication-title: Impact of Microscope Configuration and Sample Preparation on Penetration Depth Profiles’, Skin Pharmacology and Physiology
– volume: 107
  start-page: 137
  year: 2023
  ident: 10.1016/j.ijpharm.2024.124932_b0005
  article-title: Characterisation of cytotoxicity and immunomodulatory effects of glycolipid biosurfactants on human keratinocytes
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-022-12302-5
– volume: 1
  issue: 1–2
  year: 2019
  ident: 10.1016/j.ijpharm.2024.124932_b0045
  article-title: Method to quantify the in vivo skin penetration of topically applied materials based on confocal Raman spectroscopy
  publication-title: Translational Biophotonics
– volume: 310
  start-page: 657
  year: 2018
  ident: 10.1016/j.ijpharm.2024.124932_b0010
  article-title: Caffeine delivery in porcine skin: a confocal Raman study
  publication-title: Arch. Dermatol. Res.
  doi: 10.1007/s00403-018-1854-4
– volume: 30
  issue: 5
  year: 2017
  ident: 10.1016/j.ijpharm.2024.124932_b0095
  article-title: Comparison of the Skin Penetration of 3 Metabolically Stable Chemicals Using Fresh and Frozen Human Skin
  publication-title: Skin Pharmacol. Physiol.
  doi: 10.1159/000475472
– ident: 10.1016/j.ijpharm.2024.124932_b0210
  doi: 10.1007/978-3-030-16573-4_6
– volume: 27
  start-page: 2010
  issue: 6
  year: 2022
  ident: 10.1016/j.ijpharm.2024.124932_b0150
  article-title: Skin Cleansing without or with Compromise: Soaps and Syndets
  publication-title: Molecules
  doi: 10.3390/molecules27062010
– volume: 116
  start-page: 434
  issue: 3
  year: 2001
  ident: 10.1016/j.ijpharm.2024.124932_b0040
  article-title: In vivo confocal raman microspectroscopy of the skin: Noninvasive determination of molecular concentration profiles
  publication-title: J, Invest. Dermatol.
  doi: 10.1046/j.1523-1747.2001.01258.x
– volume: 475
  start-page: 156
  year: 2014
  ident: 10.1016/j.ijpharm.2024.124932_b0080
  article-title: Influence of the composition of monoacyl phosphatidylcholine based microemulsions on the dermal delivery of flufenamic acid
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.08.058
– volume: 607
  year: 2021
  ident: 10.1016/j.ijpharm.2024.124932_b0115
  article-title: Critical parameters for accurate monitoring of caffeine penetration in porcine skin using confocal Raman spectroscopy
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.121055
– volume: 13
  start-page: 436
  issue: 4
  year: 2021
  ident: 10.1016/j.ijpharm.2024.124932_b0230
  article-title: Changes in skin barrier function after repeated exposition to phospholipid-based surfactants and sodium dodecyl sulfate in vivo and corneocyte surface analysis by atomic force microscopy
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13040436
– volume: 39
  start-page: 935
  year: 2022
  ident: 10.1016/j.ijpharm.2024.124932_b0100
  article-title: Application of Confocal Raman Microscopy for the Characterization of Topical Semisolid Formulations and their Penetration into Human Skin Ex Vivo
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-022-03245-7
– start-page: 1311
  year: 2022
  ident: 10.1016/j.ijpharm.2024.124932_b0135
  article-title: Novel aspects of Raman spectroscopy in skin research
  publication-title: Exp. Dermatol.
  doi: 10.1111/exd.14645
– volume: 84
  start-page: 437
  issue: 2
  year: 2013
  ident: 10.1016/j.ijpharm.2024.124932_b0070
  article-title: Towards drug quantification in human skin with confocal Raman microscopy
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2012.11.017
– volume: 9
  start-page: 262
  issue: 9
  year: 2021
  ident: 10.1016/j.ijpharm.2024.124932_b0165
  article-title: A comprehensive review on Raman spectroscopy applications
  publication-title: Chemosensors
  doi: 10.3390/chemosensors9090262
– ident: 10.1016/j.ijpharm.2024.124932_b0160
  doi: 10.3390/pharmaceutics12020152
– start-page: 337
  year: 2013
  ident: 10.1016/j.ijpharm.2024.124932_b0020
  article-title: Stratum corneum fatty acids: Their critical role in preserving barrier integrity during cleansing
  publication-title: Int. J. Cosmet. Sci.
  doi: 10.1111/ics.12042
– volume: 181
  start-page: 277
  issue: 4
  year: 1990
  ident: 10.1016/j.ijpharm.2024.124932_b0075
  article-title: Stratum corneum lipid removal by surfactants: Relation to in vivo irritation
  publication-title: Dermatology
  doi: 10.1159/000247822
– volume: 106
  start-page: 89
  year: 1996
  ident: 10.1016/j.ijpharm.2024.124932_b0205
  article-title: Structure of fully hydrated human stratum corneum: A freeze-fracture electron microscopy study
  publication-title: J, Invest. Dermatol.
  doi: 10.1111/1523-1747.ep12328031
– volume: 96
  start-page: 758
  issue: 5
  year: 1991
  ident: 10.1016/j.ijpharm.2024.124932_b0145
  article-title: Effects of UVA (320–400 nm) on the barrier characteristics of the skin
  publication-title: J, Invest. Dermatol.
  doi: 10.1111/1523-1747.ep12471711
– volume: 48
  start-page: 26
  issue: 1
  year: 2003
  ident: 10.1016/j.ijpharm.2024.124932_b0125
  article-title: Profile of irritant patch testing with detergents: sodium lauryl sulfate, sodium laureth sulfate and alkyl polyglucoside
  publication-title: Contact Dermatitis
  doi: 10.1034/j.1600-0536.2003.480105.x
– start-page: 242
  year: 2018
  ident: 10.1016/j.ijpharm.2024.124932_b0185
  article-title: Interactions between surfactants and the skin – Theory and practice
– volume: 12
  start-page: 887
  year: 2020
  ident: 10.1016/j.ijpharm.2024.124932_b0085
  article-title: ‘Franz Cell Diffusion Testing and Quantitative Confocal Raman Spectroscopy
  publication-title: In Vitro-in Vivo Correlation’, Pharmaceutics
– volume: 116
  start-page: 1088
  issue: 9
  year: 2014
  ident: 10.1016/j.ijpharm.2024.124932_b0215
  article-title: The use of natural and synthetic phospholipids as pharmaceutical excipients
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.201400219
– volume: 653
  year: 2024
  ident: 10.1016/j.ijpharm.2024.124932_b0195
  article-title: Surfactants for stabilization of dermal emulsions and their skin compatibility under UVA irradiation: Diacyl phospholipids and polysorbate 80 result in high viability rates of primary human skin cells
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2024.123903
– volume: 235
  start-page: 337
  year: 2016
  ident: 10.1016/j.ijpharm.2024.124932_b0025
  article-title: DLS and zeta potential - What they are and what they are not?
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.06.017
– volume: 108
  start-page: 3640
  year: 2019
  ident: 10.1016/j.ijpharm.2024.124932_b0155
  article-title: Anionic Surfactant-Induced Changes in Skin Permeability
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2019.06.030
– volume: 419
  start-page: 96
  year: 2011
  ident: 10.1016/j.ijpharm.2024.124932_b0110
  article-title: An improved in vitro method for measuring skin permeability that controls excess hydration of skin using modified Franz diffusion cells
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.07.025
– volume: 166
  start-page: 1
  year: 2021
  ident: 10.1016/j.ijpharm.2024.124932_b0120
  article-title: Profiling skin penetration using PEGylated emulsifiers as penetration enhancers via confocal Raman spectroscopy and fluorescence spectroscopy
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2021.04.027
– volume: 21
  start-page: 326
  issue: 4
  year: 2018
  ident: 10.1016/j.ijpharm.2024.124932_b0190
  article-title: Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.11.002
SSID ssj0006213
Score 2.4836688
Snippet [Display omitted] Ex vivo penetration tests are important tools in cosmetic and pharmaceutical research. However, variability of experimental setups is...
Ex vivo penetration tests are important tools in cosmetic and pharmaceutical research. However, variability of experimental setups is challenging when...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 124932
SubjectTerms Animals
Caffeine
Caffeine - pharmacokinetics
Confocal Raman spectroscopy
Humans
Penetration
Porcine ear skin
quantitative CRS
Skin - metabolism
Skin - radiation effects
Skin Absorption
Sodium Dodecyl Sulfate - analogs & derivatives
Sodium Dodecyl Sulfate - chemistry
Spectrum Analysis, Raman - methods
Surface-Active Agents - chemistry
Surfactant
Time Factors
Ultraviolet Rays
UVA
Water - chemistry
Title Optimizing ex vivo penetration tests via quantitative confocal Raman spectroscopy: Impact of incubation time, skin hydration, surfactant treatment and UVA irradiation on caffeine distribution
URI https://dx.doi.org/10.1016/j.ijpharm.2024.124932
https://www.ncbi.nlm.nih.gov/pubmed/39528143
https://www.proquest.com/docview/3128755443
Volume 667
WOSCitedRecordID wos001359904200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006213
  issn: 0378-5173
  databaseCode: AIEXJ
  dateStart: 19950102
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6lLQ-8IG7CUS0S6oub4PVt3kJV1IJUInoob9Z6vVYdihM5h5L-Of4Hv4YZ7_oopSogIUVWMsnOOprPnsNzEPImBBeZJ7HTCxJ8zOjEYY_LJO0xYUpmpqBRHTVswj86CkajcNjp_KhqYZYXfp4Hq1U4_a-iBhoIG0tn_0LcNVMgwHsQOhxB7HD8I8F_hpvAt-wSQwByZSyz5cSYwg1Nt8c1wLScz4DMsZ4yL0vMMHkI3OIU1ZrxhWNUvyzAxEaXk2nZEuqwLqbMcrGINatMjViffc1y43ydqB1KyqLAigng_0sm--nZwMiKAhsiKFM1NwRPU4m2boI9fPX4rbbNfDVo2Wp1MT1v4vG1a3CM4zvrTJFxrXUOMCXg_V6sshKGWf3FcZEnWTnnfXBZ1NRPFzqQfpbhYw39cx0escomjKqUWsXsrtXtqFox8J1dpoaoVHrAU3NBrukUFd4Y97Nx-bf6uEsfZ3brwOzVdt3HyBtZg6nEmOeFG2TL8t0w2CRbg8P90cfaTvAsPbxbn0tTX_b2t5vdZDnd5BmVFtLJfXJPuzZ0oCD5gHRk_pDsDJWQ1rv0pCn1m-3SHTpsuqavH5HvDW6pXFHELW3hlpa4BTKnbdzSCre0xC1t4_YdVailk5Q2qKWI2l2KmKU1ZuFzjVhaI5YCYikglrYQS-FVIZa2EfuYnH7YP9k76OnpIj3hMGvei3F2Qio544HnuCJk0udSeozZie2LNPRZ7MZSWqHw44SbJvdtx7F5wj03ZRzU2hOymU9y-YxQId3Aik1pC9N2AuGGoSVFGiRmzLwYWHeJU0kuErr1Pk6AuYiqHMtxpAUeocAjJfAu6dfLpqr3zG0LggoWkTaglWEcAZZvW_q6glEECgafGvJcThazyAYL1nexTWaXPFX4qs_GDl0rAI_r-b9v_ILcbS7bl2RzXizkK3JHLOfZrNgmG_4o2NZXzk9XNRBI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+ex+vivo+penetration+tests+via+quantitative+confocal+Raman+spectroscopy%3A+Impact+of+incubation+time%2C+skin+hydration%2C+surfactant+treatment+and+UVA+irradiation+on+caffeine+distribution&rft.jtitle=International+journal+of+pharmaceutics&rft.au=Steiner%2C+Katja&rft.au=H%C3%BCbel%2C+Pia&rft.au=Srndic%2C+Azra&rft.au=Klang%2C+Victoria&rft.date=2024-12-25&rft.pub=Elsevier+B.V&rft.issn=0378-5173&rft.volume=667&rft_id=info:doi/10.1016%2Fj.ijpharm.2024.124932&rft.externalDocID=S0378517324011669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon