The Impact of Combinations of Alcohol, Nicotine, and Cannabis on Dynamic Brain Connectivity

Alcohol, nicotine, and cannabis are among the most commonly used drugs. A prolonged and combined use of these substances can alter normal brain wiring in different ways depending on the consumed cocktail mixture. Brain connectivity alterations and their change with time can be assessed using functio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neuropsychopharmacology (New York, N.Y.) Ročník 43; číslo 4; s. 877
Hlavní autori: Vergara, Victor M, Weiland, Barbara J, Hutchison, Kent E, Calhoun, Vince D
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Nature Publishing Group 01.03.2018
Predmet:
ISSN:0893-133X, 1740-634X, 1740-634X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Alcohol, nicotine, and cannabis are among the most commonly used drugs. A prolonged and combined use of these substances can alter normal brain wiring in different ways depending on the consumed cocktail mixture. Brain connectivity alterations and their change with time can be assessed using functional magnetic resonance imaging (fMRI) because of its spatial and temporal content. Here, we estimated dynamic functional network connectivity (dFNC) as derived from fMRI data to investigate the effects of single or combined use of alcohol, nicotine, and cannabis. Data from 534 samples were grouped according to their substance use combination as controls (CTR), smokers (SMK), drinkers (DRN), smoking-and-drinking subjects (SAD), marijuana users (MAR), smoking-and-marijuana users (SAM), marijuana-and-drinking users (MAD), and users of all three substances (ALL). The DRN group tends to exhibit decreased connectivity mainly in areas of sensorial and motor control, a result supported by the dFNC outcome and the alcohol use disorder identification test. This trend dominated the SAD group and in a weaker manner MAD and ALL. Nicotine consumers were characterized by an increment of connectivity between dorsal striatum and sensorimotor areas. Where possible, common and separate effects were identified and characterized by the analysis of dFNC data. Results also suggest that a combination of cannabis and nicotine have more contrasting effects on the brain than a single use of any of these substances. On the other hand, marijuana and alcohol might follow an additive effect trend. We concluded that all of the substances have an impact on brain connectivity, but the effect differs depending on the dFNC state analyzed.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0893-133X
1740-634X
1740-634X
DOI:10.1038/npp.2017.280