Constraint Qualifications for Vector Optimization Problems in Real Topological Spaces

In this paper, we introduce a series of definitions of generalized affine functions for vector-valued functions by use of “linear set”. We prove that our generalized affine functions have some similar properties to generalized convex functions. We present examples to show that our generalized affine...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Axioms Ročník 12; číslo 8; s. 783
Hlavní autor: Zeng, Renying
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2023
Témata:
ISSN:2075-1680, 2075-1680
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we introduce a series of definitions of generalized affine functions for vector-valued functions by use of “linear set”. We prove that our generalized affine functions have some similar properties to generalized convex functions. We present examples to show that our generalized affinenesses are different from one another, and also provide an example to show that our definition of presubaffinelikeness is non-trivial; presubaffinelikeness is the weakest generalized affineness introduced in this article. We work with optimization problems that are defined and taking values in linear topological spaces. We devote to the study of constraint qualifications, and derive some optimality conditions as well as a strong duality theorem. Our optimization problems have inequality constraints, equality constraints, and abstract constraints; our inequality constraints are generalized convex functions and equality constraints are generalized affine functions.
AbstractList In this paper, we introduce a series of definitions of generalized affine functions for vector-valued functions by use of “linear set”. We prove that our generalized affine functions have some similar properties to generalized convex functions. We present examples to show that our generalized affinenesses are different from one another, and also provide an example to show that our definition of presubaffinelikeness is non-trivial; presubaffinelikeness is the weakest generalized affineness introduced in this article. We work with optimization problems that are defined and taking values in linear topological spaces. We devote to the study of constraint qualifications, and derive some optimality conditions as well as a strong duality theorem. Our optimization problems have inequality constraints, equality constraints, and abstract constraints; our inequality constraints are generalized convex functions and equality constraints are generalized affine functions.
Audience Academic
Author Zeng, Renying
Author_xml – sequence: 1
  givenname: Renying
  orcidid: 0000-0001-9073-9981
  surname: Zeng
  fullname: Zeng, Renying
BookMark eNp1kctr3DAQxk1IIWmaa86GnjfVy7J0DEsfgUDSNslVjOTRosW2XEkLTf_6KruhL6h0GPFpfh_DfK-b4znO2DQXlFxyrsk7-B7ilCkjivSKHzWnjPTdikpFjv94nzTnOW9JPZpyRflp87COcy4JwlzazzsYgw8OSqhi62NqH9GVWm6XEqbwY__R3qVoR5xyG-b2C8LY3scljnFTwbH9uoDD_KZ55WHMeP5Sz5qHD-_v159WN7cfr9dXNysnKCsrqqHTnafAle3sQCgwST32QgwOQCKzFqVUYuiU6FF2HjmxhAgi0VIngJ811wffIcLWLClMkJ5MhGD2QkwbA6kEN6LxpBOScT-gtkIob63SxAsqNWjkVFevtwevJcVvO8zFbOMuzXV8w1Qne6mFYLXr8tC1gWoaZh_r8ly9A07B1Ux8qPpVL5lQhDH5G3Ap5pzQ_xqTEvMcnfk7ugqIfwAXyn7zzzGN_8N-AuJ5oGE
CitedBy_id crossref_primary_10_1515_math_2024_0073
Cites_doi 10.1007/s10957-006-9140-6
10.1080/02331934.2020.1847109
10.1080/02331938508843061
10.1007/BFb0120929
10.1073/pnas.39.1.42
10.1007/BF02191762
10.1016/j.na.2010.04.020
10.1016/j.jmaa.2008.10.009
10.1007/978-3-642-02431-3
10.1080/0233193021000031615
10.1006/jmaa.1997.5568
10.1287/moor.22.4.977
10.1007/978-3-642-21114-0
10.1007/978-3-662-00547-7
10.1287/moor.9.1.87
10.1007/978-3-642-50280-4
10.1137/0712056
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/axioms12080783
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2075-1680
ExternalDocumentID oai_doaj_org_article_f054623fde9b448fbb890f4169a9e319
A762480226
10_3390_axioms12080783
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
EAD
EAP
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
QF4
QN7
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c412t-19a595f1a38b5bd01a261fe744dcaa6e2bbe6684d5847e65fe30b00406eb1c4a3
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001056272400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-1680
IngestDate Fri Oct 03 12:46:19 EDT 2025
Fri Jul 25 11:59:50 EDT 2025
Tue Nov 04 18:28:33 EST 2025
Tue Nov 18 20:56:28 EST 2025
Sat Nov 29 07:17:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-19a595f1a38b5bd01a261fe744dcaa6e2bbe6684d5847e65fe30b00406eb1c4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9073-9981
OpenAccessLink https://www.proquest.com/docview/2856769442?pq-origsite=%requestingapplication%
PQID 2856769442
PQPubID 2032429
ParticipantIDs doaj_primary_oai_doaj_org_article_f054623fde9b448fbb890f4169a9e319
proquest_journals_2856769442
gale_infotracacademiconefile_A762480226
crossref_primary_10_3390_axioms12080783
crossref_citationtrail_10_3390_axioms12080783
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Axioms
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jeyakumar (ref_3) 1985; 16
Zhao (ref_18) 2016; 17
ref_13
Zeng (ref_6) 2006; 131
Kanzi (ref_17) 2009; 351
Zeng (ref_5) 2002; 51
ref_20
ref_1
Robinson (ref_12) 1981; 14
Fang (ref_14) 2010; 73
Robinson (ref_11) 1975; 12
Li (ref_7) 1997; 215
ref_16
Khazayel (ref_19) 2022; 71
ref_15
Ye (ref_8) 1997; 22
ref_9
Aubin (ref_10) 1984; 9
Fan (ref_2) 1953; 39
Li (ref_4) 1994; 1
References_xml – volume: 131
  start-page: 281
  year: 2006
  ident: ref_6
  article-title: Generalized Motzkin Theorem of the Alternative and Vector Optimization Problems
  publication-title: J. Optim. Theo. Appl.
  doi: 10.1007/s10957-006-9140-6
– volume: 71
  start-page: 2033
  year: 2022
  ident: ref_19
  article-title: On the Optimality Conditions for DC Vector Optimization Problems
  publication-title: Optimization
  doi: 10.1080/02331934.2020.1847109
– volume: 16
  start-page: 643
  year: 1985
  ident: ref_3
  article-title: Convexlike Alternative Theorems and Mathematical Programming
  publication-title: Optimization
  doi: 10.1080/02331938508843061
– volume: 14
  start-page: 206
  year: 1981
  ident: ref_12
  article-title: Some Continuity Properties of Polyhedral Multifunctions
  publication-title: Math. Program. Stud.
  doi: 10.1007/BFb0120929
– volume: 39
  start-page: 42
  year: 1953
  ident: ref_2
  article-title: Minimax Theorems
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.39.1.42
– volume: 1
  start-page: 63
  year: 1994
  ident: ref_4
  article-title: Lagrange Multipliers and Saddle Points in Multiobjective Programming
  publication-title: J. Optim. Theo. Appl.
  doi: 10.1007/BF02191762
– volume: 73
  start-page: 1143
  year: 2010
  ident: ref_14
  article-title: Constraint Qualifications for Optimality Conditions and Total Lagrange Dualities in Convex Infinite Programming
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2010.04.020
– volume: 351
  start-page: 170
  year: 2009
  ident: ref_17
  article-title: Nonsmooth Semi-Infinite Programming Problems with Mixed Constraints
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.10.009
– ident: ref_16
– ident: ref_9
  doi: 10.1007/978-3-642-02431-3
– volume: 51
  start-page: 709
  year: 2002
  ident: ref_5
  article-title: Generalized Gordan Alternative Theorem with Weakened Convexity and its Applications
  publication-title: Optimization
  doi: 10.1080/0233193021000031615
– ident: ref_13
– volume: 215
  start-page: 297
  year: 1997
  ident: ref_7
  article-title: Lagrangian Multipliers, Saddle Points and Duality in Vector Optimization of Set-Valued Maps
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1997.5568
– volume: 22
  start-page: 977
  year: 1997
  ident: ref_8
  article-title: Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constriants
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.22.4.977
– volume: 17
  start-page: 879
  year: 2016
  ident: ref_18
  article-title: Constraint Qualification for Quasiconvex Inequality System with Applications in Constraint Optimization
  publication-title: J. Nonlinear Convex. Anal.
– ident: ref_20
  doi: 10.1007/978-3-642-21114-0
– ident: ref_1
  doi: 10.1007/978-3-662-00547-7
– volume: 9
  start-page: 87
  year: 1984
  ident: ref_10
  article-title: Lipschitz Behavior of Solutions to Convex Minimization Problems
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.9.1.87
– ident: ref_15
  doi: 10.1007/978-3-642-50280-4
– volume: 12
  start-page: 754
  year: 1975
  ident: ref_11
  article-title: Stability Theory for Systems of Inequalities. Part I: Linear Systems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0712056
SSID ssj0000913813
Score 2.248599
Snippet In this paper, we introduce a series of definitions of generalized affine functions for vector-valued functions by use of “linear set”. We prove that our...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 783
SubjectTerms affine functions
constraint qualifications
convex functions
Duality theorem
generalized affine functions
generalized convex functions
Graphs
Mathematical optimization
Mathematical research
Optimization
real linear topological spaces
Topological spaces
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg_sTplBwET2VNk7TNcYrDi3PoJt5C0iYwcHOsU_zzfS_txnYQL17LgyYvyXvva1--j5BryNFSQWaPuFEiErlhUS5NGaWWWetZxmwZB7GJrN_P397UYE3qC3vCanrg2nEdDzUFpGhfOmUBSnhrcxV7KCOUUY4Hws8kztQamAoxWDFIRbxmaeSA6zvme_wxqVgSI8E638hCgaz_t5Ac8kzvgOw3BSLt1gM7JFtuekT2HlfsqtUxGaHKZtB2WNDAgeGXH94olKD0NXyIp08QDCbNLUs6qHVjKjqe0meoDemwFkfAJaIvM-zLOiGj3v3w7iFq5BGiQrBkETFlpJKeGZ5bCS5lBtCQd5kQZWFM6hJrXZrmosQ_oS6V3vE4HNoU4nMhDD8l29OPqTsjFOooy2UJZpkXwnNbAmZOEW1lCEhki0RLd-mi4Q7Hab5rwBDoXr3p3ha5WdnPataMXy1v0fsrK2S7Dg9gD-hmD-i_9gC8DtdO45mEYRWmuVoAk0N2K92FiC_wTnHaIu3l8urmsFY6ySU2-gqRnP_HaC7ILmrS112CbbK9mH-6S7JTfC3G1fwq7NMfukjsyw
  priority: 102
  providerName: Directory of Open Access Journals
Title Constraint Qualifications for Vector Optimization Problems in Real Topological Spaces
URI https://www.proquest.com/docview/2856769442
https://doaj.org/article/f054623fde9b448fbb890f4169a9e319
Volume 12
WOSCitedRecordID wos001056272400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: K7-
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: M7S
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLc24DAO7Fsrg8qHSTtZ1LGdxKcJpiLQRBfxJXay7MSeKo22NAXtxN_Oe47biQO7cPEhsRQ7z35ffv79CPkCNlppsOxMWC2ZLC1npbINyx13LvCCu2YQySaK0ai8utJVSri1qaxyqROjom6mNebI97JSYTWmlNm32Q1D1ig8XU0UGi_JOqIk8Fi6d7bKsSDmZclFh9UoILrfs3_H0-uWZwOEWRePbFGE7H9KMUdrc_j6ueN8Q7aSn0n3u4Xxlrzwk3dk82QF0tq-JxdI1hkpIhY0QmmEZf6OgidLL2M-n_4EnXKdLmvSqqOfael4Qk_BxaTnHccCSpqezbC86wO5OByefz9iiWWB1ZJnC8a1VVoFbkXpFEiGWwiqgi-kbGprc5855_O8lA0eqPpcBS8Gce_noOZracVHsjaZTvwnQsEdc0I10K0IUgbhGgi9cwzaCoxrVI-w5f82dYIgx2n-MRCKoHzMY_n0yNdV_1kHvvFkzwMU36oXgmbHB9P5b5P2oAngnoK3FxqvHUSlwblSDwJ4pNpqD6oIPofCN7i1YVi1TTcUYHIIkmX2wXBIvJqc98jOUvgm7fnW_JP89v9ffyavkLS-KyPcIWuL-a3fJRv13WLczvtk_WA4qk77MTsA7Y-C9eOyxvZ-CO-r45Pq1wNbUAF0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQlY8EYdKOAFiJXVOHYeXiBUHlWraYcKpqg7105sNFI7M0yG10_xjdzrJIO6KLsu2CZWEicn597rxzkAzzFGZxojO5dWK65KK3iZ2ZrnTjgXRCFcnUSziWI0Ko-P9eEa_O73wtCyyp4TI1HXs4rGyLfSMqPVmEqlr-dfOblG0exqb6HRwmLof_3Akq15tfcOv--LNN15P367yztXAV4pkS650DbTWRBWli7DJxEWi4jgC6Xqytrcp875PC9VTROIPs-Cl0nEeo60Vikr8bpX4KqSZUH_1bDgqzEd0tgshWy1IaXUyZb9OZmdNSJNSNZdnot90SLgokAQo9vO7f_tvdyBW10ezbZb4N-FNT-9BzcPViK0zX04IjPSaIGxZFEqJPTjkwwzdfY5zlewD8iZZ91mVHbY2us0bDJlHzGFZuPWQ4KQzD7NafnaAzi6lH49hPXpbOo3gGG66WRWY7MiKBWkq3WC_IxVZkF1WzYA3n9fU3US69TNU4OlFuHBnMfDAF6u2s9bcZELW74huKxakSh4PDBbfDEdx5iA6Tdms6H22mHVHZwrdRIw49ZWe6RavB2BzRB14WNVttuBgZ0jETCzjYFR0dbrfACbPdhMx2mN-Yu0R_8-_Qyu744P9s3-3mj4GG6kmBa2SyY3YX25-OafwLXq-3LSLJ7G34fByWXj8g_galhc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFCE48EYECvgA4rTK-rEPHxAqlIioNKygReVk7F0bRaJJyIbXX-PXMbOPoB7KrQeuiZWsd7-d-cYefx_AY8zRicbMHkmrVaRyy6M8sVWUOu5c4Bl3VdyYTWTTaX58rIst-N2fhaG2yj4mNoG6WpS0Rj4SeULdmEqJUejaIoq98fPl14gcpGintbfTaCGy73_9wPKtfjbZw2f9RIjxq8OXr6POYSAqFRfriGub6CRwK3OX4FVxiwVF8JlSVWlt6oVzPk1zVdFmok-T4GXc4D7FEFcqK_F3L8A2UnIlBrBdTA6Kj5sVHlLczLlslSKl1PHI_pwtTmouYhJ5l6cyYWMYcFZaaHLd-Nr_fJeuw9WOYbPd9pW4AVt-fhOuHGzkaetbcEQ2pY05xpo1IiKhX7lkyOHZh2Yng73FaHrSHVNlRWu8U7PZnL1Dcs0OW3cJwjh7v6TGtttwdC7zugOD-WLu7wJDIupkUuGwLCgVpKt0jJEb68-MKrpkCFH_rE3Zia_TNL8YLMIIG-Y0NobwdDN-2cqOnDnyBUFnM4rkwpsPFqvPpos-JiAxR54bKq8d1uPBuVzHAbm4ttpjEMa_I-AZCmp4WaXtzmbg5EgezOxiylR0KDsdwk4PPNNFu9r8Rd29f3_9CC4hHM2byXT_PlwWyBfbXsodGKxX3_wDuFh-X8_q1cPuXWLw6byB-QcQY2Ld
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraint+Qualifications+for+Vector+Optimization+Problems+in+Real+Topological+Spaces&rft.jtitle=Axioms&rft.au=Zeng%2C+Renying&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.eissn=2075-1680&rft.volume=12&rft.issue=8&rft.spage=783&rft_id=info:doi/10.3390%2Faxioms12080783&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon