A Two-Step Newton Algorithm for the Weighted Complementarity Problem with Local Biquadratic Convergence

We discuss the weighted complementarity problem, extending the nonlinear complementarity problem on Rn. In contrast to the NCP, many equilibrium problems in science, engineering, and economics can be transformed into WCPs for more efficient methods. Smoothing Newton algorithms, known for their at le...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Axioms Ročník 12; číslo 9; s. 897
Hlavní autoři: Liu, Xiangjing, Liu, Yihan, Zhang, Jianke
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2023
Témata:
ISSN:2075-1680, 2075-1680
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We discuss the weighted complementarity problem, extending the nonlinear complementarity problem on Rn. In contrast to the NCP, many equilibrium problems in science, engineering, and economics can be transformed into WCPs for more efficient methods. Smoothing Newton algorithms, known for their at least locally superlinear convergence properties, have been widely applied to solve WCPs. We suggest a two-step Newton approach with a local biquadratic order convergence rate to solve the WCP. The new method needs to calculate two Newton equations at each iteration. We also insert a new term, which is of crucial importance for the local biquadratic convergence properties when solving the Newton equation. We demonstrate that the solution to the WCP is the accumulation point of the iterative sequence produced by the approach. We further demonstrate that the algorithm possesses local biquadratic convergence properties. Numerical results indicate the method to be practical and efficient.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms12090897