Machine‐Learning (ML)‐Physics Fusion Model Accelerates the Paradigm Shift in Typhoon Forecasting With a CNOP‐Based Assimilation Framework
In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's...
Saved in:
| Published in: | Geophysical research letters Vol. 52; no. 15 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington
John Wiley & Sons, Inc
16.08.2025
Wiley |
| Subjects: | |
| ISSN: | 0094-8276, 1944-8007 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's robust large‐scale forecasting capabilities alongside SHTM's mesoscale strengths, significantly enhancing track, intensity, and precipitation predictions for super typhoons Yagi (2024) and Krathon (2024). To further improve the forecasting capability for extreme typhoons, the Conditional Nonlinear Optimal Perturbation method is employed for the first time to identify sensitive regions for the hybrid model. Despite being constrained by FuXi's large‐scale forecast fields, the dense assimilation of satellite observations within these sensitive regions can further enhance typhoon forecasts. This study emphasizes the synergy between data‐driven strategies and established physical modeling, which can inspire further depth in understanding of extreme typhoon events.
Plain Language Summary
Accurate typhoon forecasting is crucial for effective disaster preparedness. In this study, we developed a hybrid model that integrates the machine‐learning (ML)‐based FuXi model with the physics‐based Shanghai Typhoon Model (SHTM) using spectral nudging. This approach leverages FuXi's strength in capturing large‐scale weather patterns and SHTM's ability to resolve finer mesoscale details, thereby improving predictions of short‐term typhoon's track, intensity, and rainfall. Additionally, we identified observation‐sensitive regions using the Conditional Nonlinear Optimal Perturbation method and found that assimilating satellite data from these regions further improved the forecasts. Overall, our findings highlight the potential of integrating ML with physical models to advance operational typhoon predictions.
Key Points
This study combines the FuXi model and the Shanghai Typhoon Model (SHTM) to create a hybrid operational typhoon forecasting paradigm
Using the strengths of both models, FuXi‐SHTM improves the accuracy of typhoon track, intensity, and precipitation prediction
Proposed a novel workflow of assimilating target observation in Conditional Nonlinear Optimal Perturbation‐sensitive area of FuXi‐SHTM hybrid model |
|---|---|
| AbstractList | In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's robust large‐scale forecasting capabilities alongside SHTM's mesoscale strengths, significantly enhancing track, intensity, and precipitation predictions for super typhoons Yagi (2024) and Krathon (2024). To further improve the forecasting capability for extreme typhoons, the Conditional Nonlinear Optimal Perturbation method is employed for the first time to identify sensitive regions for the hybrid model. Despite being constrained by FuXi's large‐scale forecast fields, the dense assimilation of satellite observations within these sensitive regions can further enhance typhoon forecasts. This study emphasizes the synergy between data‐driven strategies and established physical modeling, which can inspire further depth in understanding of extreme typhoon events. In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's robust large‐scale forecasting capabilities alongside SHTM's mesoscale strengths, significantly enhancing track, intensity, and precipitation predictions for super typhoons Yagi (2024) and Krathon (2024). To further improve the forecasting capability for extreme typhoons, the Conditional Nonlinear Optimal Perturbation method is employed for the first time to identify sensitive regions for the hybrid model. Despite being constrained by FuXi's large‐scale forecast fields, the dense assimilation of satellite observations within these sensitive regions can further enhance typhoon forecasts. This study emphasizes the synergy between data‐driven strategies and established physical modeling, which can inspire further depth in understanding of extreme typhoon events. Accurate typhoon forecasting is crucial for effective disaster preparedness. In this study, we developed a hybrid model that integrates the machine‐learning (ML)‐based FuXi model with the physics‐based Shanghai Typhoon Model (SHTM) using spectral nudging. This approach leverages FuXi's strength in capturing large‐scale weather patterns and SHTM's ability to resolve finer mesoscale details, thereby improving predictions of short‐term typhoon's track, intensity, and rainfall. Additionally, we identified observation‐sensitive regions using the Conditional Nonlinear Optimal Perturbation method and found that assimilating satellite data from these regions further improved the forecasts. Overall, our findings highlight the potential of integrating ML with physical models to advance operational typhoon predictions. This study combines the FuXi model and the Shanghai Typhoon Model (SHTM) to create a hybrid operational typhoon forecasting paradigm Using the strengths of both models, FuXi‐SHTM improves the accuracy of typhoon track, intensity, and precipitation prediction Proposed a novel workflow of assimilating target observation in Conditional Nonlinear Optimal Perturbation‐sensitive area of FuXi‐SHTM hybrid model In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's robust large‐scale forecasting capabilities alongside SHTM's mesoscale strengths, significantly enhancing track, intensity, and precipitation predictions for super typhoons Yagi (2024) and Krathon (2024). To further improve the forecasting capability for extreme typhoons, the Conditional Nonlinear Optimal Perturbation method is employed for the first time to identify sensitive regions for the hybrid model. Despite being constrained by FuXi's large‐scale forecast fields, the dense assimilation of satellite observations within these sensitive regions can further enhance typhoon forecasts. This study emphasizes the synergy between data‐driven strategies and established physical modeling, which can inspire further depth in understanding of extreme typhoon events. Plain Language Summary Accurate typhoon forecasting is crucial for effective disaster preparedness. In this study, we developed a hybrid model that integrates the machine‐learning (ML)‐based FuXi model with the physics‐based Shanghai Typhoon Model (SHTM) using spectral nudging. This approach leverages FuXi's strength in capturing large‐scale weather patterns and SHTM's ability to resolve finer mesoscale details, thereby improving predictions of short‐term typhoon's track, intensity, and rainfall. Additionally, we identified observation‐sensitive regions using the Conditional Nonlinear Optimal Perturbation method and found that assimilating satellite data from these regions further improved the forecasts. Overall, our findings highlight the potential of integrating ML with physical models to advance operational typhoon predictions. Key Points This study combines the FuXi model and the Shanghai Typhoon Model (SHTM) to create a hybrid operational typhoon forecasting paradigm Using the strengths of both models, FuXi‐SHTM improves the accuracy of typhoon track, intensity, and precipitation prediction Proposed a novel workflow of assimilating target observation in Conditional Nonlinear Optimal Perturbation‐sensitive area of FuXi‐SHTM hybrid model Abstract In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's robust large‐scale forecasting capabilities alongside SHTM's mesoscale strengths, significantly enhancing track, intensity, and precipitation predictions for super typhoons Yagi (2024) and Krathon (2024). To further improve the forecasting capability for extreme typhoons, the Conditional Nonlinear Optimal Perturbation method is employed for the first time to identify sensitive regions for the hybrid model. Despite being constrained by FuXi's large‐scale forecast fields, the dense assimilation of satellite observations within these sensitive regions can further enhance typhoon forecasts. This study emphasizes the synergy between data‐driven strategies and established physical modeling, which can inspire further depth in understanding of extreme typhoon events. |
| Author | Wang, Dongliang Huang, Wei Niu, Zeyi Fan, Xuliang Yang, Mengqi Mu, Mu Qin, Bo |
| Author_xml | – sequence: 1 givenname: Zeyi orcidid: 0000-0003-0594-1144 surname: Niu fullname: Niu, Zeyi organization: Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of the China Meteorological Administration – sequence: 2 givenname: Dongliang surname: Wang fullname: Wang, Dongliang email: wangdl@typhoon.org.cn organization: Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of the China Meteorological Administration – sequence: 3 givenname: Mu orcidid: 0000-0002-6841-5611 surname: Mu fullname: Mu, Mu organization: Fudan University – sequence: 4 givenname: Wei surname: Huang fullname: Huang, Wei organization: Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of the China Meteorological Administration – sequence: 5 givenname: Xuliang surname: Fan fullname: Fan, Xuliang organization: Shanghai Central Meteorological Observatory – sequence: 6 givenname: Mengqi orcidid: 0000-0002-7312-1212 surname: Yang fullname: Yang, Mengqi organization: Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of the China Meteorological Administration – sequence: 7 givenname: Bo surname: Qin fullname: Qin, Bo organization: Fudan University |
| BookMark | eNqFkctuEzEUhi1UJNLCjgewxAYkUnybi5chIqHSpI2giKV1ansyDpNxajuqsuMN4Bn7JDgNqhALWNk--vydo_OfopPBDxahl5ScU8LkO0ZYMW8oLSQrn6ARlUKMa0KqEzQiROY7q8pn6DTGNSGEE05H6McCdOcGe__9Z2MhDG5Y4deL5k1-L7t9dDri2S46P-CFN7bHE61tbwMkG3HqLF5CAONWG_y5c23CbsDX-23nMz_zwWqI6WD86lKHAU8vr5ZZ_B6iNXgSo9u4HtJBPguwsXc-fHuOnrbQR_vi93mGvsw-XE8_jpur-cV00oy1oKwaC9ZKIywTJa8kpVxTUTCuS6NbwxjINo_ZGsPbklYSNOdgZMW44drWN6Wk_AxdHL3Gw1ptg9tA2CsPTj0UfFgpCMnp3ipe8IO9LkwtBOQ9ayElqev2RupCsDK7Xh1d2-BvdzYmtfa7MOTxFWe85jkVwTL19kjp4GMMtn3sSok6xKf-jC_j7C9cu_SwrBTA9f_5dOd6u_9nAzX_1FREVhX_BdHLryQ |
| CitedBy_id | crossref_primary_10_1007_s00376_025_5464_8 crossref_primary_10_1029_2025GL115926 crossref_primary_10_1016_j_tcrr_2025_08_006 |
| Cites_doi | 10.1029/2024JD043261 10.1038/s41612‐024‐00769‐0 10.1029/2023GL105729 10.1088/1748‐9326/ad41f0 10.1002/qj.4760 10.5194/npg‐10‐493‐2003 10.1016/j.atmosres.2018.12.005 10.1038/nature14956 10.1007/s00382‐018‐4082‐x 10.1038/s41612‐025‐00926‐z 10.1007/s00382‐019‐04742‐z 10.5194/egusphere-egu25-10701 10.1175/2008MWR2640.1 10.1002/qj.1894 10.1073/pnas.2420914122 10.1007/s11430‐023‐1273‐1 10.1029/2024JH000207 10.1109/JSTARS.2024.3522056 10.5194/egusphere‐2024‐1042 10.1029/2025GL115926 10.1007/s00376‐022‐2136‐9 10.1029/2023GL107377 10.1175/JPO‐D‐21‐0200.1 10.1029/2024EA003952 10.1038/s41586‐024‐07744‐y 10.1029/97JD00237 10.1038/s41586‐023‐06185‐3 10.1126/science.adi2336 10.1002/qj.4502 10.1016/j.atmosres.2022.106391 10.1038/s41612‐023‐00512‐1 10.1175/1520‐0493(2004)132<0519:EFOWPU>2.0.CO;2 10.1002/qj.2109 10.1175/BAMS‐D‐22‐0208.1 10.1038/s43247‐024‐01890‐x 10.1029/2002JD003296 10.1002/jgrd.50823 10.1111/j.1600‐0870.2011.00536.x 10.5194/acp‐22‐11429‐2022 10.1002/qj.4975 |
| ContentType | Journal Article |
| Copyright | 2025. The Author(s). 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. The Author(s). – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 3V. 7TG 7TN 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U DOA |
| DOI | 10.1029/2025GL115926 |
| DatabaseName | Wiley Online Library : Open Access journals [open access] CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users] ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library ProQuest Science Database (NC LIVE) Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library : Open Access journals [open access] url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_353145285d844a029c499088fb9c5426 10_1029_2025GL115926 GRL70977 |
| Genre | article |
| GrantInformation_xml | – fundername: Outstanding Youth Science Fund for Universities in Anhui Province funderid: 2022AH020093 – fundername: Academician Workstation of AP‐TCRC – fundername: National Natural Science Foundation of China Project funderid: 42075012; 42288101 – fundername: National Youth Science Foundation of China Project funderid: 4240050560 – fundername: Special Project‐Original Exploration funderid: 42450163 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFGKR AFPKN AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA GROUPED_DOAJ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAYXX CITATION 3V. 7TG 7TN 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
| ID | FETCH-LOGICAL-c4127-42f9d4e246379113c14523c6dcfd22a9fccefdd3f6179ac33ad9723d3ce8b6913 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001543364100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Mon Oct 20 20:56:48 EDT 2025 Thu Oct 16 08:22:44 EDT 2025 Sat Nov 29 07:17:09 EST 2025 Tue Nov 18 21:28:26 EST 2025 Wed Aug 13 09:41:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4127-42f9d4e246379113c14523c6dcfd22a9fccefdd3f6179ac33ad9723d3ce8b6913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0594-1144 0000-0002-6841-5611 0000-0002-7312-1212 |
| OpenAccessLink | https://doaj.org/article/353145285d844a029c499088fb9c5426 |
| PQID | 3238302542 |
| PQPubID | 54723 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_353145285d844a029c499088fb9c5426 proquest_journals_3238302542 crossref_primary_10_1029_2025GL115926 crossref_citationtrail_10_1029_2025GL115926 wiley_primary_10_1029_2025GL115926_GRL70977 |
| PublicationCentury | 2000 |
| PublicationDate | 16 August 2025 |
| PublicationDateYYYYMMDD | 2025-08-16 |
| PublicationDate_xml | – month: 08 year: 2025 text: 16 August 2025 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2025; 130 2019; 53 2024; 105 2023; 6 2023; 382 2025; 151 2025; 8 2024; 51 2023; 149 2015; 525 2025 2024 2022; 22 2025; 12 2024; 18 2003; 10 2009; 137 2024; 19 1997; 102 2023; 40 2004; 132 2003; 108 2025; 122 2023 2024; 632 2022; 280 2024; 5 2024; 7 2013; 118 2013; 139 2024; 2024 2011; 63 2019; 218 2022; 52 2018; 51 2024; 1 2024; 67 2023; 619 2012; 138 2023; 50 2024; 150 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 5 issue: 1 year: 2024 article-title: Seasonality and climate modes influence the temporal clustering of unique atmospheric rivers in the Western US publication-title: Communications Earth & Environment – volume: 2024 start-page: 1 year: 2024 end-page: 35 article-title: Do data‐driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu‐weather and GraphCast publication-title: EGUsphere – volume: 18 start-page: 3599 year: 2024 end-page: 3610 article-title: Assimilating FY‐4B AGRI three water vapor channels in the operational Shanghai Typhoon model using a GSI‐based 3DVar approach publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 139 start-page: 1544 issue: 675 year: 2013 end-page: 1554 article-title: Conditions under which CNOP sensitivity is valid for tropical cyclone adaptive observations publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 67 start-page: 826 issue: 3 year: 2024 end-page: 842 article-title: Coupled conditional nonlinear optimal perturbations and their application to ENSO ensemble forecasts publication-title: Science China Earth Sciences – volume: 108 issue: D22 year: 2003 article-title: Implementation of Noah land surface model advances in the National Centers for Environmental prediction operational mesoscale Eta model publication-title: Journal of Geophysical Research – volume: 51 start-page: 3351 issue: 9–10 year: 2018 end-page: 3368 article-title: Towards an optimal observational array for dealing with challenges of El Niño–Southern Oscillation predictions due to diversities of El Niño publication-title: Climate Dynamics – year: 2024 – volume: 619 start-page: 533 issue: 7970 year: 2023 end-page: 538 article-title: Accurate medium‐range global weather forecasting with 3D neural networks publication-title: Nature – volume: 137 start-page: 1623 issue: 5 year: 2009 end-page: 1639 article-title: A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation publication-title: Monthly Weather Review – volume: 130 issue: 9 year: 2025 article-title: Improving tropical cyclone track forecast skill through assimilating target observation achieved by AI‐based conditional nonlinear optimal perturbation publication-title: Journal of Geophysical Research: Atmospheres – volume: 122 issue: 21 year: 2025 article-title: Can AI weather models predict out‐of‐distribution gray swan tropical cyclones? publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 1 issue: 3 year: 2024 article-title: A hybrid machine learning/physics‐based modeling framework for 2‐week extended prediction of tropical cyclones publication-title: Journal of Geophysical Research: Machine Learning and Computation – volume: 19 issue: 5 year: 2024 article-title: Improvement of disastrous extreme precipitation forecasting in North China by a Pangu‐weather AI‐driven regional WRF model publication-title: Environmental Research Letters – volume: 40 start-page: 791 issue: 5 year: 2023 end-page: 803 article-title: Effects of dropsonde data from field campaigns on forecasts of tropical cyclones over the western North Pacific in 2020 and the role of CNOP sensitivity publication-title: Advances in Atmospheric Sciences – volume: 632 start-page: 1060 issue: 8027 year: 2024 end-page: 1066 article-title: Neural general circulation models for weather and climate publication-title: Nature – volume: 138 start-page: 1808 issue: 668 year: 2012 end-page: 1813 article-title: Spectral nudging in regional climate modelling: How strongly should we nudge? publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 50 issue: 20 year: 2023 article-title: Predictability of the most long‐lived tropical cyclone Freddy (2023) during its westward journey through the southern tropical Indian Ocean publication-title: Geophysical Research Letters – volume: 151 year: 2025 article-title: Sensitive areas for target observation associated with meteorological forecasts for dust storm events in the Beijing–Tianjin–Hebei region publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 12 issue: 2 year: 2025 article-title: Improving typhoon predictions by integrating a data‐driven machine learning model with a physics model based on spectral nudging and data assimilation publication-title: Earth and Space Science – volume: 52 start-page: 723 issue: 4 year: 2022 end-page: 740 article-title: The Most sensitive initial error of sea surface height anomaly forecasts and its implication for target observations of mesoscale eddies publication-title: Journal of Physical Oceanography – volume: 10 start-page: 493 issue: 6 year: 2003 end-page: 501 article-title: Conditional nonlinear optimal perturbation and its applications publication-title: Nonlinear Processes in Geophysics – volume: 105 start-page: E84 issue: 1 year: 2024 end-page: E104 article-title: From California's extreme drought to major flooding: Evaluating and synthesizing experimental seasonal and subseasonal forecasts of landfalling atmospheric rivers and extreme precipitation during winter 2022/23 publication-title: Bulletin of the American Meteorological Society – volume: 132 start-page: 519 issue: 2 year: 2004 end-page: 542 article-title: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis publication-title: Monthly Weather Review – volume: 8 year: 2025 article-title: Exploring typhoon intensity forecasting through integrating AI weather forecasting with a regional numerical weather model publication-title: npj Climate and Atmospheric Science – volume: 53 start-page: 1845 issue: 3 year: 2019 end-page: 1857 article-title: Examining the capability of reanalyses in capturing the temporal clustering of heavy precipitation across Europe publication-title: Climate Dynamics – volume: 51 issue: 12 year: 2024 article-title: On some limitations of current machine learning weather prediction models publication-title: Geophysical Research Letters – volume: 280 year: 2022 article-title: Improving typhoon predictions by assimilating the retrieval of atmospheric temperature profiles from the FengYun‐4A geostationary interferometric infrared sounder publication-title: Atmospheric Research – year: 2025 – volume: 150 start-page: 3305 issue: 763 year: 2024 end-page: 3321 article-title: Dynamic channel selection based on vertical sensitivities for the assimilation of FY‐4A geostationary interferometric infrared sounder targeted observations publication-title: Quarterly Journal of the Royal Meteorological Society – year: 2023 – volume: 382 start-page: 1416 issue: 6677 year: 2023 end-page: 1421 article-title: Learning skillful medium‐range global weather forecasting publication-title: Science – volume: 63 start-page: 939 issue: 5 year: 2011 end-page: 957 article-title: Application of conditional nonlinear optimal perturbations to tropical cyclone adaptive observation using the weather research and forecasting model publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 525 start-page: 47 issue: 7567 year: 2015 end-page: 55 article-title: The quiet revolution of numerical weather prediction publication-title: Nature – volume: 6 issue: 1 year: 2023 article-title: FuXi: A cascade machine learning forecasting system for 15‐day global weather forecast publication-title: npj Climate and Atmospheric Science – volume: 218 start-page: 195 year: 2019 end-page: 206 article-title: Assessment of various cumulus parameterization schemes for the simulation of a very heavy rainfall event based on an optimal ensemble approach publication-title: Atmospheric Research – volume: 22 start-page: 11429 issue: 17 year: 2022 end-page: 11453 article-title: Toward targeted observations of the meteorological initial state for improving the PM . forecast of a heavy haze event that occurred in the Beijing–Tianjin–Hebei region publication-title: Atmospheric Chemistry and Physics – volume: 149 start-page: 2206 issue: 755 year: 2023 end-page: 2232 article-title: A new approach to represent model uncertainty in the forecasting of tropical cyclones: The orthogonal nonlinear forcing singular vectors publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 102 start-page: 16663 issue: D14 year: 1997 end-page: 16682 article-title: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave publication-title: Journal of Geophysical Research – volume: 118 start-page: 10490 issue: 18 year: 2013 end-page: 10505 article-title: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments publication-title: Journal of Geophysical Research: Atmospheres – volume: 7 issue: 1 year: 2024 article-title: Evaluation of five global AI models for predicting weather in Eastern Asia and the Western Pacific publication-title: npj Climate and Atmospheric Science – ident: e_1_2_7_19_1 doi: 10.1029/2024JD043261 – ident: e_1_2_7_21_1 doi: 10.1038/s41612‐024‐00769‐0 – ident: e_1_2_7_22_1 doi: 10.1029/2023GL105729 – ident: e_1_2_7_40_1 doi: 10.1088/1748‐9326/ad41f0 – ident: e_1_2_7_20_1 doi: 10.1002/qj.4760 – ident: e_1_2_7_25_1 doi: 10.5194/npg‐10‐493‐2003 – ident: e_1_2_7_3_1 – ident: e_1_2_7_6_1 doi: 10.1016/j.atmosres.2018.12.005 – ident: e_1_2_7_2_1 doi: 10.1038/nature14956 – ident: e_1_2_7_10_1 doi: 10.1007/s00382‐018‐4082‐x – ident: e_1_2_7_41_1 doi: 10.1038/s41612‐025‐00926‐z – ident: e_1_2_7_45_1 doi: 10.1007/s00382‐019‐04742‐z – ident: e_1_2_7_14_1 doi: 10.5194/egusphere-egu25-10701 – ident: e_1_2_7_47_1 – ident: e_1_2_7_26_1 doi: 10.1175/2008MWR2640.1 – ident: e_1_2_7_32_1 doi: 10.1002/qj.1894 – ident: e_1_2_7_37_1 doi: 10.1073/pnas.2420914122 – ident: e_1_2_7_9_1 doi: 10.1007/s11430‐023‐1273‐1 – ident: e_1_2_7_23_1 doi: 10.1029/2024JH000207 – ident: e_1_2_7_36_1 – ident: e_1_2_7_29_1 doi: 10.1109/JSTARS.2024.3522056 – ident: e_1_2_7_31_1 doi: 10.5194/egusphere‐2024‐1042 – ident: e_1_2_7_27_1 doi: 10.1029/2025GL115926 – ident: e_1_2_7_33_1 doi: 10.1007/s00376‐022‐2136‐9 – ident: e_1_2_7_5_1 doi: 10.1029/2023GL107377 – ident: e_1_2_7_15_1 doi: 10.1175/JPO‐D‐21‐0200.1 – ident: e_1_2_7_28_1 doi: 10.1029/2024EA003952 – ident: e_1_2_7_16_1 doi: 10.1038/s41586‐024‐07744‐y – ident: e_1_2_7_24_1 doi: 10.1029/97JD00237 – ident: e_1_2_7_4_1 doi: 10.1038/s41586‐023‐06185‐3 – ident: e_1_2_7_17_1 doi: 10.1126/science.adi2336 – ident: e_1_2_7_30_1 – ident: e_1_2_7_46_1 doi: 10.1002/qj.4502 – ident: e_1_2_7_12_1 doi: 10.1016/j.atmosres.2022.106391 – ident: e_1_2_7_7_1 doi: 10.1038/s41612‐023‐00512‐1 – ident: e_1_2_7_38_1 doi: 10.1175/1520‐0493(2004)132<0519:EFOWPU>2.0.CO;2 – ident: e_1_2_7_35_1 – ident: e_1_2_7_18_1 – ident: e_1_2_7_34_1 doi: 10.1002/qj.2109 – ident: e_1_2_7_8_1 doi: 10.1175/BAMS‐D‐22‐0208.1 – ident: e_1_2_7_44_1 doi: 10.1038/s43247‐024‐01890‐x – ident: e_1_2_7_11_1 doi: 10.1029/2002JD003296 – ident: e_1_2_7_13_1 doi: 10.1002/jgrd.50823 – ident: e_1_2_7_39_1 doi: 10.1111/j.1600‐0870.2011.00536.x – ident: e_1_2_7_43_1 doi: 10.5194/acp‐22‐11429‐2022 – ident: e_1_2_7_42_1 doi: 10.1002/qj.4975 |
| SSID | ssj0003031 |
| Score | 2.500098 |
| Snippet | In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning... In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning... Abstract In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Assimilation CNOP Forecasting FuXi model Hurricanes Learning algorithms Machine learning Perturbation method Perturbation methods Physics Satellite observation Typhoon forecasting typhoon forecasts Typhoons |
| SummonAdditionalLinks | – databaseName: ProQuest Science Database (NC LIVE) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgAYkLb8TCgnwACYQiEtt14hNiV7Qc2lLxEHuLnLHdRmLbpekiceMfwG_klzDjuqUc2AuXqo3GI0cez8Oefh9jj0sVtPFYqaJAlakGt1RlIc8I-cWVOui8iZD5w3I8ro6PzSQduHWprXLjE6OjdgugM_IXEmOLpL9ui5enXzJijaLb1UShcZFdQuUFtXSNxGTridE9rxnzjMoqUerU-J4LQzV_bzDEQYZgFXZCUkTu_yvd3E1aY9TpX__f-d5g11K-yV-tDeQmu-Dnt9iVQeTz_YbfYgcodLfZj1Fsq_S_vv9MmKtT_nQ0fIa_kwzvn9HRGif6NNQIgBGLgCY6jkkkn9ilde30hL-ftWHF2znHEne2QHli_wTbUX81_9SuZtzyo_HbCSo-xBDqOFpIe9Kue_J4f9Msdod97L_-cPQmS2wNGahClJkSwTjlhdKyRA8qoVBY5IJ2EJwQ1gScVnBOBsyZjAUprSPGMyfBV402hbzL9uaLub_HeKDLSYGBU1Ra9Rr89Lrn88Z6BUbYfJ893yxYDQnKnBg1PtfxSl2Yend599mTrfTpGsLjH3KHtPZbGQLejg8Wy2md9nEt0Wfhe1U9VyllUQVgyYieOjQGcK1RycHGHOrkDbr6jy3gzKM1nTuRevBuWOaYmN8_X9kDdpWG0Ql3oQ_Y3mp55h-yy_B11XbLR3Er_AYLDA4Q priority: 102 providerName: ProQuest – databaseName: Wiley Online Library : Open Access journals [open access] dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKAYkL5VW10FY-gARCEYntOPGxrbrbw3ZZ8RC9RY4fu5HaXbTZInHjH8Bv7C_pjONdbQ9FQlyiJJqMnHie9uQbQl4XwkvlIFMFgjIRNahUqU2aIPKLLaSXaR0g8wfFcFien6tRXHDDf2E6fIjVghtqRrDXqOC6biPYAGJkQtae9wfAUzF5j9zPMl6gVDMxWlliMM9dxzwlkpIVMha-w_Mf1p--5ZICcv-tcHM9aA1ep7f1v-N9Qh7HeJMedgLylGy46TPysB_6-f6Es1ABatrn5PdZKKt017_-RMzVMX17NngH15GG9q5waY1i-zTgaAx4LASaaCkEkXSk59o240v6edL4BW2mFFLcyQzosfun0S3WV9NvzWJCNT0efhwB4yNwoZaChDSXTVeTR3vLYrEX5Gvv5MvxaRK7NSRGZKxIBPPKCseEhImA2TCZgCTXSGu8ZUwrD8Py1nIPMZPShnNtseOZ5caVtVQZ3yab09nU7RDqcXOSgeNkpRR5DUcnc5fW2gmjmE53yfvlhFUmQpljR42LKmypM1Wtf-xd8mZF_b2D8LiD7gjnfkWDwNvhxmw-rqIeVxxsFrxXmdtSCA0sDKSMYKl9rUwukMneUnKqaA3aikNcxBF2gMHIg4z8dSBV_9OgSCEwf_lP1K_II7yPC96Z3CObi_mV2ycPzI9F084PgmbcAAdiC9I priority: 102 providerName: Wiley-Blackwell |
| Title | Machine‐Learning (ML)‐Physics Fusion Model Accelerates the Paradigm Shift in Typhoon Forecasting With a CNOP‐Based Assimilation Framework |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2025GL115926 https://www.proquest.com/docview/3238302542 https://doaj.org/article/353145285d844a029c499088fb9c5426 |
| Volume | 52 |
| WOSCitedRecordID | wos001543364100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library : Open Access journals [open access] customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaggMSl4qkuLSsfQAKhiKztOPGRLc1yyG6jLRUVl8jxoxuJbtFmi8SNfwC_kV_CjJOtlgNw4WLF0cQaecbzcEbfEPIsFV4qB5kqEGSRqOFIZdrEESK_2FR6GdcBMr9IZ7Ps7EyVW62-sCasgwfuNu41ByURCcsSmwmhY6YMxOhwNHytTALuBa1vnKpNMtXbYDDMXa88JaKMpbIveYfPMdtPJgXwohBQYcsZBcz-3wLN7XA1-Jv8HtntA0X6pmPwPrnhlg_InUloxPsVnkLppmkfku_TUA_pfn770YOlntMX0-IlzHsaml_hnRjFvmewojHgahAhoqUQ_dFSr7Rtzi_oyaLxa9osKeSmi0ugx7adRrdYGE0_NOsF1fRwdlzCwmPwfZaCaJuLpiumo_mmyusROc2P3h--i_o2C5ERI5ZGgnllhWNC8hRMHze439xIa7xlTCsPbHlruYdgR2nDubbYqsxy47JaqhF_THaWl0u3R6jHv4oMPB7LpEhqGJ1MXFxrJ4xiOh6QV5v9rkyPQY6tMD5V4V84U9W2dAbk-TX15w574w90YxTdNQ0iZocXoEdVr0fVv_RoQA42gq_6Y9xWHAIajngBDDgPyvBXRqrJvEhjiKif_A-O9sldXBwvsEfygOysV1fuKbltvqybdjUkN5koh-TW-GhWzodB-2H2dp6fFjCbsuMwljimJzCWycdfq9kGAw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VAoIL_4hCgT1QCYQsnN3N2ntAiBaSVnVCBK3ozaz3J7HUJiVOQb3xBvAkPBRPwszGDuFAbz1wiZxoNNqs53f9eT5CniTCS-WgUwWBNBIFuFSqTRzh5BebSC_jIozMz5J-Pz04UIMV8rN5FwZhlU1MDIHaTgyekb_gkFs4vrrNXh1_jpA1Cp-uNhQac7PYdadfoWWrXu68gfu7wVjn7d7WdlSzCkRGtFgSCeaVFY4JyRPwdG5aApoxI63xljGtvDHOW8s95HalDefaIjOX5calhVQtDnovkIsCJ4shVJANFpEf0sGcoU-JKGWJrIH2MVN4xtDuZrADCsc4LKXAwBTwV3m7XCSHLNe5_r_tzw1yra6n6eu5A9wkK258i1zuBr7iU7gKCFdT3SbfewE26n59-1HPlB3Sp73sGXyvZWjnBI8OKdLDgUZYwCFOnHYVhSKZDvRU23J4RD-MSj-j5ZhCCz-agDyymxpdIX6cfixnI6rpVv_dABRvQolgKXhAeVTOMYe004Dh7pD9c9mXu2R1PBm7e4R6fPjKoDBgqRTtAj6dbLu40E4YxXS8Rp43BpKbelQ7MoYc5gEywFS-bE5rZGMhfTwfUfIPuU20tYUMDhYPP0ymw7yOUzmHmAz_K23bVAgNKgy0xJCJfKEM2BYoWW_ML6-jXZX_sT1YebDeMxeSd99nSQyNx_2zlT0mV7b3elme7fR3H5CrqAJP81tynazOpifuIblkvszKavoouCEln87brn8DEMBrGQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VAhUb3qiFArOgEghZdcbjxywQoi0OVd1g8RAVGzOeR2KpTUqcgrrjD-B7-By-hHvHdggLuuuCTeREV1eT8X2Oj-8h5FHMbSQMdKogkHi8BJdKpPI9nPyi48hGfulG5mfxYJAcHIh8ifzs3oVBWGUXE12g1hOFZ-SbAeSWAF_dZpu2hUXkO-nz488eMkjhk9aOTqMxkT1z-hXat_rZ7g7c6w3G0pfvtl95LcOAp3iPxR5nVmhuGI-CGLw-UD0OjZmKtLKaMSmsUsZqHVjI80KqIJAaWbp0oExSRqIXgN4L5GIMPSbCCfPw4zwLQGpo2PoE9xIWRy3o3mcCzxvCfga7IXCkw0I6dKwBf5W6iwWzy3jptf95r66Tq22dTV80jnGDLJnxTXK573iMT-HKIV9VfYt833dwUvPr24921uyQPt7PnsD3VoamJ3ikSJE2DjTCAg5xErWpKRTPNJdTqavhEX07quyMVmMKrf1oAvLIeqpkjbhy-qGajaik24PXOSjegtJBU_CM6qhqsIg07UByt8n7c9mXO2R5PBmbVUItPpRlUDCwJOJhCZ8mCo1fSsOVYNJfI087YylUO8IdmUQOCwclYKJYNK01sjGXPm5Gl_xDbgvtbi6DA8fdD5PpsGjjVxFArIb_lYQ64VyCCgWtMmQoWwoFdgZK1jtTLNooWBd_7BBW7iz5zIUU_TdZ7ENDcvdsZQ_JCphzke0O9u6RK6gBD_l70TpZnk1PzH1ySX2ZVfX0gfNISj6dt1n_BmLYdAU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine%E2%80%90Learning+%28ML%29%E2%80%90Physics+Fusion+Model+Accelerates+the+Paradigm+Shift+in+Typhoon+Forecasting+With+a+CNOP%E2%80%90Based+Assimilation+Framework&rft.jtitle=Geophysical+research+letters&rft.au=Zeyi+Niu&rft.au=Dongliang+Wang&rft.au=Mu+Mu&rft.au=Wei+Huang&rft.date=2025-08-16&rft.pub=Wiley&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2025GL115926&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_353145285d844a029c499088fb9c5426 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |