Machine‐Learning (ML)‐Physics Fusion Model Accelerates the Paradigm Shift in Typhoon Forecasting With a CNOP‐Based Assimilation Framework

In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters Vol. 52; no. 15
Main Authors: Niu, Zeyi, Wang, Dongliang, Mu, Mu, Huang, Wei, Fan, Xuliang, Yang, Mengqi, Qin, Bo
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 16.08.2025
Wiley
Subjects:
ISSN:0094-8276, 1944-8007
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's robust large‐scale forecasting capabilities alongside SHTM's mesoscale strengths, significantly enhancing track, intensity, and precipitation predictions for super typhoons Yagi (2024) and Krathon (2024). To further improve the forecasting capability for extreme typhoons, the Conditional Nonlinear Optimal Perturbation method is employed for the first time to identify sensitive regions for the hybrid model. Despite being constrained by FuXi's large‐scale forecast fields, the dense assimilation of satellite observations within these sensitive regions can further enhance typhoon forecasts. This study emphasizes the synergy between data‐driven strategies and established physical modeling, which can inspire further depth in understanding of extreme typhoon events. Plain Language Summary Accurate typhoon forecasting is crucial for effective disaster preparedness. In this study, we developed a hybrid model that integrates the machine‐learning (ML)‐based FuXi model with the physics‐based Shanghai Typhoon Model (SHTM) using spectral nudging. This approach leverages FuXi's strength in capturing large‐scale weather patterns and SHTM's ability to resolve finer mesoscale details, thereby improving predictions of short‐term typhoon's track, intensity, and rainfall. Additionally, we identified observation‐sensitive regions using the Conditional Nonlinear Optimal Perturbation method and found that assimilating satellite data from these regions further improved the forecasts. Overall, our findings highlight the potential of integrating ML with physical models to advance operational typhoon predictions. Key Points This study combines the FuXi model and the Shanghai Typhoon Model (SHTM) to create a hybrid operational typhoon forecasting paradigm Using the strengths of both models, FuXi‐SHTM improves the accuracy of typhoon track, intensity, and precipitation prediction Proposed a novel workflow of assimilating target observation in Conditional Nonlinear Optimal Perturbation‐sensitive area of FuXi‐SHTM hybrid model
AbstractList In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's robust large‐scale forecasting capabilities alongside SHTM's mesoscale strengths, significantly enhancing track, intensity, and precipitation predictions for super typhoons Yagi (2024) and Krathon (2024). To further improve the forecasting capability for extreme typhoons, the Conditional Nonlinear Optimal Perturbation method is employed for the first time to identify sensitive regions for the hybrid model. Despite being constrained by FuXi's large‐scale forecast fields, the dense assimilation of satellite observations within these sensitive regions can further enhance typhoon forecasts. This study emphasizes the synergy between data‐driven strategies and established physical modeling, which can inspire further depth in understanding of extreme typhoon events.
In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's robust large‐scale forecasting capabilities alongside SHTM's mesoscale strengths, significantly enhancing track, intensity, and precipitation predictions for super typhoons Yagi (2024) and Krathon (2024). To further improve the forecasting capability for extreme typhoons, the Conditional Nonlinear Optimal Perturbation method is employed for the first time to identify sensitive regions for the hybrid model. Despite being constrained by FuXi's large‐scale forecast fields, the dense assimilation of satellite observations within these sensitive regions can further enhance typhoon forecasts. This study emphasizes the synergy between data‐driven strategies and established physical modeling, which can inspire further depth in understanding of extreme typhoon events. Accurate typhoon forecasting is crucial for effective disaster preparedness. In this study, we developed a hybrid model that integrates the machine‐learning (ML)‐based FuXi model with the physics‐based Shanghai Typhoon Model (SHTM) using spectral nudging. This approach leverages FuXi's strength in capturing large‐scale weather patterns and SHTM's ability to resolve finer mesoscale details, thereby improving predictions of short‐term typhoon's track, intensity, and rainfall. Additionally, we identified observation‐sensitive regions using the Conditional Nonlinear Optimal Perturbation method and found that assimilating satellite data from these regions further improved the forecasts. Overall, our findings highlight the potential of integrating ML with physical models to advance operational typhoon predictions. This study combines the FuXi model and the Shanghai Typhoon Model (SHTM) to create a hybrid operational typhoon forecasting paradigm Using the strengths of both models, FuXi‐SHTM improves the accuracy of typhoon track, intensity, and precipitation prediction Proposed a novel workflow of assimilating target observation in Conditional Nonlinear Optimal Perturbation‐sensitive area of FuXi‐SHTM hybrid model
In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's robust large‐scale forecasting capabilities alongside SHTM's mesoscale strengths, significantly enhancing track, intensity, and precipitation predictions for super typhoons Yagi (2024) and Krathon (2024). To further improve the forecasting capability for extreme typhoons, the Conditional Nonlinear Optimal Perturbation method is employed for the first time to identify sensitive regions for the hybrid model. Despite being constrained by FuXi's large‐scale forecast fields, the dense assimilation of satellite observations within these sensitive regions can further enhance typhoon forecasts. This study emphasizes the synergy between data‐driven strategies and established physical modeling, which can inspire further depth in understanding of extreme typhoon events. Plain Language Summary Accurate typhoon forecasting is crucial for effective disaster preparedness. In this study, we developed a hybrid model that integrates the machine‐learning (ML)‐based FuXi model with the physics‐based Shanghai Typhoon Model (SHTM) using spectral nudging. This approach leverages FuXi's strength in capturing large‐scale weather patterns and SHTM's ability to resolve finer mesoscale details, thereby improving predictions of short‐term typhoon's track, intensity, and rainfall. Additionally, we identified observation‐sensitive regions using the Conditional Nonlinear Optimal Perturbation method and found that assimilating satellite data from these regions further improved the forecasts. Overall, our findings highlight the potential of integrating ML with physical models to advance operational typhoon predictions. Key Points This study combines the FuXi model and the Shanghai Typhoon Model (SHTM) to create a hybrid operational typhoon forecasting paradigm Using the strengths of both models, FuXi‐SHTM improves the accuracy of typhoon track, intensity, and precipitation prediction Proposed a novel workflow of assimilating target observation in Conditional Nonlinear Optimal Perturbation‐sensitive area of FuXi‐SHTM hybrid model
Abstract In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning model with the physics‐based Shanghai Typhoon Model (SHTM). By employing spectral nudging, the hybrid FuXi‐SHTM model leverages FuXi's robust large‐scale forecasting capabilities alongside SHTM's mesoscale strengths, significantly enhancing track, intensity, and precipitation predictions for super typhoons Yagi (2024) and Krathon (2024). To further improve the forecasting capability for extreme typhoons, the Conditional Nonlinear Optimal Perturbation method is employed for the first time to identify sensitive regions for the hybrid model. Despite being constrained by FuXi's large‐scale forecast fields, the dense assimilation of satellite observations within these sensitive regions can further enhance typhoon forecasts. This study emphasizes the synergy between data‐driven strategies and established physical modeling, which can inspire further depth in understanding of extreme typhoon events.
Author Wang, Dongliang
Huang, Wei
Niu, Zeyi
Fan, Xuliang
Yang, Mengqi
Mu, Mu
Qin, Bo
Author_xml – sequence: 1
  givenname: Zeyi
  orcidid: 0000-0003-0594-1144
  surname: Niu
  fullname: Niu, Zeyi
  organization: Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of the China Meteorological Administration
– sequence: 2
  givenname: Dongliang
  surname: Wang
  fullname: Wang, Dongliang
  email: wangdl@typhoon.org.cn
  organization: Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of the China Meteorological Administration
– sequence: 3
  givenname: Mu
  orcidid: 0000-0002-6841-5611
  surname: Mu
  fullname: Mu, Mu
  organization: Fudan University
– sequence: 4
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  organization: Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of the China Meteorological Administration
– sequence: 5
  givenname: Xuliang
  surname: Fan
  fullname: Fan, Xuliang
  organization: Shanghai Central Meteorological Observatory
– sequence: 6
  givenname: Mengqi
  orcidid: 0000-0002-7312-1212
  surname: Yang
  fullname: Yang, Mengqi
  organization: Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of the China Meteorological Administration
– sequence: 7
  givenname: Bo
  surname: Qin
  fullname: Qin, Bo
  organization: Fudan University
BookMark eNqFkctuEzEUhi1UJNLCjgewxAYkUnybi5chIqHSpI2giKV1ansyDpNxajuqsuMN4Bn7JDgNqhALWNk--vydo_OfopPBDxahl5ScU8LkO0ZYMW8oLSQrn6ARlUKMa0KqEzQiROY7q8pn6DTGNSGEE05H6McCdOcGe__9Z2MhDG5Y4deL5k1-L7t9dDri2S46P-CFN7bHE61tbwMkG3HqLF5CAONWG_y5c23CbsDX-23nMz_zwWqI6WD86lKHAU8vr5ZZ_B6iNXgSo9u4HtJBPguwsXc-fHuOnrbQR_vi93mGvsw-XE8_jpur-cV00oy1oKwaC9ZKIywTJa8kpVxTUTCuS6NbwxjINo_ZGsPbklYSNOdgZMW44drWN6Wk_AxdHL3Gw1ptg9tA2CsPTj0UfFgpCMnp3ipe8IO9LkwtBOQ9ayElqev2RupCsDK7Xh1d2-BvdzYmtfa7MOTxFWe85jkVwTL19kjp4GMMtn3sSok6xKf-jC_j7C9cu_SwrBTA9f_5dOd6u_9nAzX_1FREVhX_BdHLryQ
CitedBy_id crossref_primary_10_1007_s00376_025_5464_8
crossref_primary_10_1029_2025GL115926
crossref_primary_10_1016_j_tcrr_2025_08_006
Cites_doi 10.1029/2024JD043261
10.1038/s41612‐024‐00769‐0
10.1029/2023GL105729
10.1088/1748‐9326/ad41f0
10.1002/qj.4760
10.5194/npg‐10‐493‐2003
10.1016/j.atmosres.2018.12.005
10.1038/nature14956
10.1007/s00382‐018‐4082‐x
10.1038/s41612‐025‐00926‐z
10.1007/s00382‐019‐04742‐z
10.5194/egusphere-egu25-10701
10.1175/2008MWR2640.1
10.1002/qj.1894
10.1073/pnas.2420914122
10.1007/s11430‐023‐1273‐1
10.1029/2024JH000207
10.1109/JSTARS.2024.3522056
10.5194/egusphere‐2024‐1042
10.1029/2025GL115926
10.1007/s00376‐022‐2136‐9
10.1029/2023GL107377
10.1175/JPO‐D‐21‐0200.1
10.1029/2024EA003952
10.1038/s41586‐024‐07744‐y
10.1029/97JD00237
10.1038/s41586‐023‐06185‐3
10.1126/science.adi2336
10.1002/qj.4502
10.1016/j.atmosres.2022.106391
10.1038/s41612‐023‐00512‐1
10.1175/1520‐0493(2004)132<0519:EFOWPU>2.0.CO;2
10.1002/qj.2109
10.1175/BAMS‐D‐22‐0208.1
10.1038/s43247‐024‐01890‐x
10.1029/2002JD003296
10.1002/jgrd.50823
10.1111/j.1600‐0870.2011.00536.x
10.5194/acp‐22‐11429‐2022
10.1002/qj.4975
ContentType Journal Article
Copyright 2025. The Author(s).
2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. The Author(s).
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7TG
7TN
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOA
DOI 10.1029/2025GL115926
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_353145285d844a029c499088fb9c5426
10_1029_2025GL115926
GRL70977
Genre article
GrantInformation_xml – fundername: Outstanding Youth Science Fund for Universities in Anhui Province
  funderid: 2022AH020093
– fundername: Academician Workstation of AP‐TCRC
– fundername: National Natural Science Foundation of China Project
  funderid: 42075012; 42288101
– fundername: National Youth Science Foundation of China Project
  funderid: 4240050560
– fundername: Special Project‐Original Exploration
  funderid: 42450163
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFGKR
AFPKN
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
GROUPED_DOAJ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
3V.
7TG
7TN
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
ID FETCH-LOGICAL-c4127-42f9d4e246379113c14523c6dcfd22a9fccefdd3f6179ac33ad9723d3ce8b6913
IEDL.DBID M2P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001543364100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Mon Oct 20 20:56:48 EDT 2025
Thu Oct 16 08:22:44 EDT 2025
Sat Nov 29 07:17:09 EST 2025
Tue Nov 18 21:28:26 EST 2025
Wed Aug 13 09:41:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4127-42f9d4e246379113c14523c6dcfd22a9fccefdd3f6179ac33ad9723d3ce8b6913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0594-1144
0000-0002-6841-5611
0000-0002-7312-1212
OpenAccessLink https://doaj.org/article/353145285d844a029c499088fb9c5426
PQID 3238302542
PQPubID 54723
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_353145285d844a029c499088fb9c5426
proquest_journals_3238302542
crossref_primary_10_1029_2025GL115926
crossref_citationtrail_10_1029_2025GL115926
wiley_primary_10_1029_2025GL115926_GRL70977
PublicationCentury 2000
PublicationDate 16 August 2025
PublicationDateYYYYMMDD 2025-08-16
PublicationDate_xml – month: 08
  year: 2025
  text: 16 August 2025
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2025; 130
2019; 53
2024; 105
2023; 6
2023; 382
2025; 151
2025; 8
2024; 51
2023; 149
2015; 525
2025
2024
2022; 22
2025; 12
2024; 18
2003; 10
2009; 137
2024; 19
1997; 102
2023; 40
2004; 132
2003; 108
2025; 122
2023
2024; 632
2022; 280
2024; 5
2024; 7
2013; 118
2013; 139
2024; 2024
2011; 63
2019; 218
2022; 52
2018; 51
2024; 1
2024; 67
2023; 619
2012; 138
2023; 50
2024; 150
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 5
  issue: 1
  year: 2024
  article-title: Seasonality and climate modes influence the temporal clustering of unique atmospheric rivers in the Western US
  publication-title: Communications Earth & Environment
– volume: 2024
  start-page: 1
  year: 2024
  end-page: 35
  article-title: Do data‐driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu‐weather and GraphCast
  publication-title: EGUsphere
– volume: 18
  start-page: 3599
  year: 2024
  end-page: 3610
  article-title: Assimilating FY‐4B AGRI three water vapor channels in the operational Shanghai Typhoon model using a GSI‐based 3DVar approach
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 139
  start-page: 1544
  issue: 675
  year: 2013
  end-page: 1554
  article-title: Conditions under which CNOP sensitivity is valid for tropical cyclone adaptive observations
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 67
  start-page: 826
  issue: 3
  year: 2024
  end-page: 842
  article-title: Coupled conditional nonlinear optimal perturbations and their application to ENSO ensemble forecasts
  publication-title: Science China Earth Sciences
– volume: 108
  issue: D22
  year: 2003
  article-title: Implementation of Noah land surface model advances in the National Centers for Environmental prediction operational mesoscale Eta model
  publication-title: Journal of Geophysical Research
– volume: 51
  start-page: 3351
  issue: 9–10
  year: 2018
  end-page: 3368
  article-title: Towards an optimal observational array for dealing with challenges of El Niño–Southern Oscillation predictions due to diversities of El Niño
  publication-title: Climate Dynamics
– year: 2024
– volume: 619
  start-page: 533
  issue: 7970
  year: 2023
  end-page: 538
  article-title: Accurate medium‐range global weather forecasting with 3D neural networks
  publication-title: Nature
– volume: 137
  start-page: 1623
  issue: 5
  year: 2009
  end-page: 1639
  article-title: A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation
  publication-title: Monthly Weather Review
– volume: 130
  issue: 9
  year: 2025
  article-title: Improving tropical cyclone track forecast skill through assimilating target observation achieved by AI‐based conditional nonlinear optimal perturbation
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 122
  issue: 21
  year: 2025
  article-title: Can AI weather models predict out‐of‐distribution gray swan tropical cyclones?
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 1
  issue: 3
  year: 2024
  article-title: A hybrid machine learning/physics‐based modeling framework for 2‐week extended prediction of tropical cyclones
  publication-title: Journal of Geophysical Research: Machine Learning and Computation
– volume: 19
  issue: 5
  year: 2024
  article-title: Improvement of disastrous extreme precipitation forecasting in North China by a Pangu‐weather AI‐driven regional WRF model
  publication-title: Environmental Research Letters
– volume: 40
  start-page: 791
  issue: 5
  year: 2023
  end-page: 803
  article-title: Effects of dropsonde data from field campaigns on forecasts of tropical cyclones over the western North Pacific in 2020 and the role of CNOP sensitivity
  publication-title: Advances in Atmospheric Sciences
– volume: 632
  start-page: 1060
  issue: 8027
  year: 2024
  end-page: 1066
  article-title: Neural general circulation models for weather and climate
  publication-title: Nature
– volume: 138
  start-page: 1808
  issue: 668
  year: 2012
  end-page: 1813
  article-title: Spectral nudging in regional climate modelling: How strongly should we nudge?
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 50
  issue: 20
  year: 2023
  article-title: Predictability of the most long‐lived tropical cyclone Freddy (2023) during its westward journey through the southern tropical Indian Ocean
  publication-title: Geophysical Research Letters
– volume: 151
  year: 2025
  article-title: Sensitive areas for target observation associated with meteorological forecasts for dust storm events in the Beijing–Tianjin–Hebei region
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 12
  issue: 2
  year: 2025
  article-title: Improving typhoon predictions by integrating a data‐driven machine learning model with a physics model based on spectral nudging and data assimilation
  publication-title: Earth and Space Science
– volume: 52
  start-page: 723
  issue: 4
  year: 2022
  end-page: 740
  article-title: The Most sensitive initial error of sea surface height anomaly forecasts and its implication for target observations of mesoscale eddies
  publication-title: Journal of Physical Oceanography
– volume: 10
  start-page: 493
  issue: 6
  year: 2003
  end-page: 501
  article-title: Conditional nonlinear optimal perturbation and its applications
  publication-title: Nonlinear Processes in Geophysics
– volume: 105
  start-page: E84
  issue: 1
  year: 2024
  end-page: E104
  article-title: From California's extreme drought to major flooding: Evaluating and synthesizing experimental seasonal and subseasonal forecasts of landfalling atmospheric rivers and extreme precipitation during winter 2022/23
  publication-title: Bulletin of the American Meteorological Society
– volume: 132
  start-page: 519
  issue: 2
  year: 2004
  end-page: 542
  article-title: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis
  publication-title: Monthly Weather Review
– volume: 8
  year: 2025
  article-title: Exploring typhoon intensity forecasting through integrating AI weather forecasting with a regional numerical weather model
  publication-title: npj Climate and Atmospheric Science
– volume: 53
  start-page: 1845
  issue: 3
  year: 2019
  end-page: 1857
  article-title: Examining the capability of reanalyses in capturing the temporal clustering of heavy precipitation across Europe
  publication-title: Climate Dynamics
– volume: 51
  issue: 12
  year: 2024
  article-title: On some limitations of current machine learning weather prediction models
  publication-title: Geophysical Research Letters
– volume: 280
  year: 2022
  article-title: Improving typhoon predictions by assimilating the retrieval of atmospheric temperature profiles from the FengYun‐4A geostationary interferometric infrared sounder
  publication-title: Atmospheric Research
– year: 2025
– volume: 150
  start-page: 3305
  issue: 763
  year: 2024
  end-page: 3321
  article-title: Dynamic channel selection based on vertical sensitivities for the assimilation of FY‐4A geostationary interferometric infrared sounder targeted observations
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 2023
– volume: 382
  start-page: 1416
  issue: 6677
  year: 2023
  end-page: 1421
  article-title: Learning skillful medium‐range global weather forecasting
  publication-title: Science
– volume: 63
  start-page: 939
  issue: 5
  year: 2011
  end-page: 957
  article-title: Application of conditional nonlinear optimal perturbations to tropical cyclone adaptive observation using the weather research and forecasting model
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 525
  start-page: 47
  issue: 7567
  year: 2015
  end-page: 55
  article-title: The quiet revolution of numerical weather prediction
  publication-title: Nature
– volume: 6
  issue: 1
  year: 2023
  article-title: FuXi: A cascade machine learning forecasting system for 15‐day global weather forecast
  publication-title: npj Climate and Atmospheric Science
– volume: 218
  start-page: 195
  year: 2019
  end-page: 206
  article-title: Assessment of various cumulus parameterization schemes for the simulation of a very heavy rainfall event based on an optimal ensemble approach
  publication-title: Atmospheric Research
– volume: 22
  start-page: 11429
  issue: 17
  year: 2022
  end-page: 11453
  article-title: Toward targeted observations of the meteorological initial state for improving the PM . forecast of a heavy haze event that occurred in the Beijing–Tianjin–Hebei region
  publication-title: Atmospheric Chemistry and Physics
– volume: 149
  start-page: 2206
  issue: 755
  year: 2023
  end-page: 2232
  article-title: A new approach to represent model uncertainty in the forecasting of tropical cyclones: The orthogonal nonlinear forcing singular vectors
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 102
  start-page: 16663
  issue: D14
  year: 1997
  end-page: 16682
  article-title: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave
  publication-title: Journal of Geophysical Research
– volume: 118
  start-page: 10490
  issue: 18
  year: 2013
  end-page: 10505
  article-title: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 7
  issue: 1
  year: 2024
  article-title: Evaluation of five global AI models for predicting weather in Eastern Asia and the Western Pacific
  publication-title: npj Climate and Atmospheric Science
– ident: e_1_2_7_19_1
  doi: 10.1029/2024JD043261
– ident: e_1_2_7_21_1
  doi: 10.1038/s41612‐024‐00769‐0
– ident: e_1_2_7_22_1
  doi: 10.1029/2023GL105729
– ident: e_1_2_7_40_1
  doi: 10.1088/1748‐9326/ad41f0
– ident: e_1_2_7_20_1
  doi: 10.1002/qj.4760
– ident: e_1_2_7_25_1
  doi: 10.5194/npg‐10‐493‐2003
– ident: e_1_2_7_3_1
– ident: e_1_2_7_6_1
  doi: 10.1016/j.atmosres.2018.12.005
– ident: e_1_2_7_2_1
  doi: 10.1038/nature14956
– ident: e_1_2_7_10_1
  doi: 10.1007/s00382‐018‐4082‐x
– ident: e_1_2_7_41_1
  doi: 10.1038/s41612‐025‐00926‐z
– ident: e_1_2_7_45_1
  doi: 10.1007/s00382‐019‐04742‐z
– ident: e_1_2_7_14_1
  doi: 10.5194/egusphere-egu25-10701
– ident: e_1_2_7_47_1
– ident: e_1_2_7_26_1
  doi: 10.1175/2008MWR2640.1
– ident: e_1_2_7_32_1
  doi: 10.1002/qj.1894
– ident: e_1_2_7_37_1
  doi: 10.1073/pnas.2420914122
– ident: e_1_2_7_9_1
  doi: 10.1007/s11430‐023‐1273‐1
– ident: e_1_2_7_23_1
  doi: 10.1029/2024JH000207
– ident: e_1_2_7_36_1
– ident: e_1_2_7_29_1
  doi: 10.1109/JSTARS.2024.3522056
– ident: e_1_2_7_31_1
  doi: 10.5194/egusphere‐2024‐1042
– ident: e_1_2_7_27_1
  doi: 10.1029/2025GL115926
– ident: e_1_2_7_33_1
  doi: 10.1007/s00376‐022‐2136‐9
– ident: e_1_2_7_5_1
  doi: 10.1029/2023GL107377
– ident: e_1_2_7_15_1
  doi: 10.1175/JPO‐D‐21‐0200.1
– ident: e_1_2_7_28_1
  doi: 10.1029/2024EA003952
– ident: e_1_2_7_16_1
  doi: 10.1038/s41586‐024‐07744‐y
– ident: e_1_2_7_24_1
  doi: 10.1029/97JD00237
– ident: e_1_2_7_4_1
  doi: 10.1038/s41586‐023‐06185‐3
– ident: e_1_2_7_17_1
  doi: 10.1126/science.adi2336
– ident: e_1_2_7_30_1
– ident: e_1_2_7_46_1
  doi: 10.1002/qj.4502
– ident: e_1_2_7_12_1
  doi: 10.1016/j.atmosres.2022.106391
– ident: e_1_2_7_7_1
  doi: 10.1038/s41612‐023‐00512‐1
– ident: e_1_2_7_38_1
  doi: 10.1175/1520‐0493(2004)132<0519:EFOWPU>2.0.CO;2
– ident: e_1_2_7_35_1
– ident: e_1_2_7_18_1
– ident: e_1_2_7_34_1
  doi: 10.1002/qj.2109
– ident: e_1_2_7_8_1
  doi: 10.1175/BAMS‐D‐22‐0208.1
– ident: e_1_2_7_44_1
  doi: 10.1038/s43247‐024‐01890‐x
– ident: e_1_2_7_11_1
  doi: 10.1029/2002JD003296
– ident: e_1_2_7_13_1
  doi: 10.1002/jgrd.50823
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1600‐0870.2011.00536.x
– ident: e_1_2_7_43_1
  doi: 10.5194/acp‐22‐11429‐2022
– ident: e_1_2_7_42_1
  doi: 10.1002/qj.4975
SSID ssj0003031
Score 2.500098
Snippet In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning...
In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi machine‐learning...
Abstract In this study, we develop an advanced hybrid forecasting system for short‐term (0–120 hr) typhoon predictions, seamlessly integrating the FuXi...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Assimilation
CNOP
Forecasting
FuXi model
Hurricanes
Learning algorithms
Machine learning
Perturbation method
Perturbation methods
Physics
Satellite observation
Typhoon forecasting
typhoon forecasts
Typhoons
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYq1EpcUH9ALIXKh1ZqhSKytuPER0Dd7WHZrgoV3CLvOGYjwYI2S6Xe-gblGXmSzjhetD0AF25JNLFGnvHMZ2fyDWMfrdOWmKQSARkkauwlrjmrcM8jTCqcwYwZSFwH-XBYnJ2Z0VKrL6oJa-mB24nbk-gkKhNF5gqlbCoMIEbHpeHHBjJMLxR909wsNlMxBmNgbnvlGZUUItex5B1fp91-1h8gEDJEqLCUjAJn_39AcxmuhnzTe83WIlDk-62Cb9iLavqWveqHRry_8SqUbkLzjv09CvWQ1d2f20iWes4_Hw2-4H2U4b0bOhPj1PcMRwTAVEMMEQ1H9MdHdmZdfX7Jjye1n_N6ynFvOrlCeWrbCbahwmh-Ws8n3PLD4fcRDnyAuc9xNG19WbfFdLy3qPJaZz97X08OvyWxzUICqivyRAlvnKqE0jLH0CeB5luCduCdENZ4VMs7Jz2CHWNBSuuoVZmTUBVjbbpyg61Mr6bVJuMgup5-Xc2IVs8rMJUmCjjjtE-197rDdhfzXULkIKdWGBdl-BYuTLlsnQ77dC993XJvPCB3QKa7lyHG7PAA_aiMflQ-5Ucdtr0wfBmXcVNKBDSS-AIEah6c4VFFyv6PQZ4iot56Do3es1UanA6wu3qbrcxnN9UOewm_5nUz-xD8_R_98f20
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfGAIkL42vaYJt8AAmEIhrbceLjNq3doSsVH2K3yH2O20hbi5oOiRv_AfyN-0v2nuNW3WFIiFsSPVsv8ft0nn-PsdfWaUtIUomADBI18hJ1zirMeYTpCGfQYwYQ134-GBTn52YYN9zoLEyLD7HacCPNCPaaFNyOmgg2QBiZmLVnvT4GNEboe-x-msqcpFqo4coSo3luO-YZlRQi17HwHcd_WB99yyUF5P5b4eZ60Bq8Tnfrf_l9wh7HeJMftgLylG1U02fsYS_08_2JV6ECFJrn7PdZKKusrn_9iZirY_72rP8O7yMN717R1hqn9mk4IwB6LAKaaDgGkXxo59bV40v-eVL7Ba-nHFPcyQzpqfsn2Ibqq_m3ejHhlh8PPg5x4iN0oY6jhNSXdVuTx7vLYrEX7Gv35MvxaRK7NSSgUpEnSnjjVCWUxoXA1YBUYZIL2oF3QljjkS3vnPQYMxkLUlpHHc-chKoYaZPKbbY5nU2rHcZBpJ5OwGaEzucVmEoTkpxx2ne093qXvV8uWAkRypw6alyU4Ze6MOX6x95lb1bU31sIjzvojmjtVzQEvB0ezObjMupxKdFm4XsVmSuUsjgFIF9oqf3IQKZokr2l5JTRGjSlxLhIEuyAQM6DjPyVkbL3qZ93MDB_-U_Ur9gjek4b3qneY5uL-VW1zx7Aj0XdzA-CZtwAn-0Leg
  priority: 102
  providerName: Wiley-Blackwell
Title Machine‐Learning (ML)‐Physics Fusion Model Accelerates the Paradigm Shift in Typhoon Forecasting With a CNOP‐Based Assimilation Framework
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2025GL115926
https://www.proquest.com/docview/3238302542
https://doaj.org/article/353145285d844a029c499088fb9c5426
Volume 52
WOSCitedRecordID wos001543364100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfYBhIv_EcMRuUHkEAoorEdJ35CdCzlIe2ijomJl8i14zYSa0fTIfHGN4DPyCfhznVLeWAvvFhJdDld5PPd-Xz5HSHPtJUakaQiZhITibHjsOa0gD0PU11mFXhMD-JapMNhdnamypBwa0NZ5domekNt5wZz5K85-BaOv26zNxdfIuwahaeroYXGDtmDyCbGkq4BKzeWGMzzqmOeElHGUhkK37tM4Z4_6RfwkkJYhS2X5JH7_wo3t4NW73Xy2_8r7x1yK8Sb9O1KQe6Sa_XsHrnR9_18v8GVrwA17X3yY-DLKutf338GzNUJfTEoXsJ9oKH5JabWKLZPA47GgMdCoImWQhBJS73Qtpmc05Np45a0mVHY4k7nQI_dP41usb6afmyWU6rp4fC4BMY9cKGWgoY0582qJo_m62KxB-Q0P_pw-D4K3RoiI2KWRoI5ZUXNhOQpWFBuYgGbXCOtcZYxrRyI5azlDmImpQ3n2mLHM8tNnY2livlDsjubz-pHhBoWO_wDNkF0PieMqiUiySkrXVc6J_fJq_WEVSZAmWNHjc-VP1Jnqtqe3n3yfEN9sYLw-AddD-d-Q4PA2_7BfDGpwjquONgs-K4ssZkQGlgYkAsstRsrA3MNTA7W6lAFa9BWf3QBJPfadKUgVX9UpF0IzB9fzewJuYmvYYY7lgdkd7m4rJ-S6-brsmkXHbLDRNkhe72jYTnq-FwD3L0b5adFB5fJsR9LHNMTGMvk02_WQRWl
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELZKAcGFf0ShgA9UAqEVWdvxrg8I0ULSqpsQQSt6Wxz_JCu1ScmmoN54A3gSHoonYca7G8KB3nrgtlmNRo4zv874-wh5oq3UiCQVMdM2kRh6Dj6nBfQ8TLWYVZAxA4hrlvT76cGBGqyQn81dGByrbGJiCNR2avCM_AWH3MLx6jZ7dfw5QtYo_He1odCozGLXnX6Flq18ufMGft8Nxjpv97a2o5pVIDIiZkkkmFdWOCYkT8DTuYkFNGNGWuMtY1p5Y5y3lnvI7UobzrVFZi7LjUuHUsUc9F4gFwUii-GoIBssIj-kg4qhT4koZYmsB-1bTOEZQ7ubQfmlEMZhKQUGpoC_ytvlIjlkuc71_21_bpBrdT1NX1cOcJOsuMktcrkb-IpP4SlMuJryNvneC2Oj7te3HzWm7Ig-7WXP4HMtQzsneHRIkR4ONMICDhFx2pUUimQ60DNti9ER_TAu_JwWEwot_HgK8shuanSJ8-P0YzEfU023-u8GoHgTSgRLwQOKo6KaOaSdZhjuDtk_l325S1Yn04m7R6hhsccbvm1EH_TCKCcRKU9Z6VvSe7lGnjcGkpsaqh0ZQw7zMDLAVL5sTmtkYyF9XEGU_ENuE21tIYPA4uHFdDbK6ziVc4jJ8L3Stk2F0KDCwLogE_mhMmBboGS9Mb-8jnZl_sf2YOXBes9cSN59nyUtaDzun63sMbmyvdfL8mynv_uAXEUVeJofy3WyOp-duIfkkvkyL8rZo-CGlHw6b7v-DSSLasE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKgYoLb9RCAR-oBEKrZm3vwweEaMuGqtsQ8RAVl8XxI1mpTUo2BfXGP4Dfw8_hlzDj3Q3hQG89cEui0cjZfOOZccbfR8gjZWKFTFIB05EOxMBxiDkloOdhssOMhIzpSVzzpNdLDw5kf4n8bO_C4Fhluyf6jdpMNJ6Rb3LILRyvbrNN14xF9Hey58efA1SQwn9aWzmNGiJ79vQrtG_Vs90d-K03GMtevtt-FTQKA4EWIUsCwZw0wjIR8wSinutQQGOmY6OdYUxJp7V1xnAHeV4qzbkyqNJluLbpIJYhB78XyMUEekwcJ-xHH-dZAFJDrdYnRZCyJG6G7jtM4nlD1M2hFJNI6bCQDr1qwF-l7mLB7DNedu1_flbXydWmzqYv6sC4QZbs-Ca53PU6xqfwyk--6uoW-b7vx0ntr28_Gq7ZIX28nz-B940NzU7wSJGibBx4hAUcIhO1rSgUz7SvpsqUwyP6dlS6GS3HFFr70QTsUfVUqwrnyumHcjaiim73XvfB8RaUDoZCZJRHZT2LSLN2SO42eX8uz-UOWR5PxnaVUM1Chzd_I2QldEJLGyODnjSx68TOxWvkaQuWQjcU7qgkclj4UQImi0VorZGNufVxTV3yD7stxN3cBgnH_QeT6bBo9q-Cw14N3yuNTCqEAhca1gUZyg2kBpyBk_UWikWzC1bFHxzCyj2Sz1xI0X2TJx1oSO6e7ewhWQE4F_lub-8euYIe8JA_jNfJ8mx6Yu-TS_rLrKymD3xEUvLpvGH9G2xLc60
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine%E2%80%90Learning+%28ML%29%E2%80%90Physics+Fusion+Model+Accelerates+the+Paradigm+Shift+in+Typhoon+Forecasting+With+a+CNOP%E2%80%90Based+Assimilation+Framework&rft.jtitle=Geophysical+research+letters&rft.au=Niu%2C+Zeyi&rft.au=Wang%2C+Dongliang&rft.au=Mu%2C+Mu&rft.au=Huang%2C+Wei&rft.date=2025-08-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=15&rft_id=info:doi/10.1029%2F2025GL115926&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon