An FPTAS for the parallel two-stage flowshop problem

We consider the NP-hard m-parallel two-stage flowshop problem, abbreviated as the (m,2)-PFS problem, where we need to schedule n jobs to m parallel identical two-stage flowshops in order to minimize the makespan, i.e. the maximum completion time of all the jobs on the m flowshops. The (m,2)-PFS prob...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science Vol. 657; pp. 64 - 72
Main Authors: Dong, Jianming, Tong, Weitian, Luo, Taibo, Wang, Xueshi, Hu, Jueliang, Xu, Yinfeng, Lin, Guohui
Format: Journal Article
Language:English
Published: Elsevier B.V 02.01.2017
Subjects:
ISSN:0304-3975, 1879-2294
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the NP-hard m-parallel two-stage flowshop problem, abbreviated as the (m,2)-PFS problem, where we need to schedule n jobs to m parallel identical two-stage flowshops in order to minimize the makespan, i.e. the maximum completion time of all the jobs on the m flowshops. The (m,2)-PFS problem can be decomposed into two subproblems: to assign the n jobs to the m parallel flowshops, and for each flowshop to schedule the jobs assigned to the flowshop. We first present a pseudo-polynomial time dynamic programming algorithm to solve the (m,2)-PFS problem optimally, for any fixed m, based on an earlier idea for solving the (2,2)-PFS problem. Using the dynamic programming algorithm as a subroutine, we design a fully polynomial-time approximation scheme (FPTAS) for the (m,2)-PFS problem.
AbstractList We consider the NP-hard m-parallel two-stage flowshop problem, abbreviated as the (m,2)-PFS problem, where we need to schedule n jobs to m parallel identical two-stage flowshops in order to minimize the makespan, i.e. the maximum completion time of all the jobs on the m flowshops. The (m,2)-PFS problem can be decomposed into two subproblems: to assign the n jobs to the m parallel flowshops, and for each flowshop to schedule the jobs assigned to the flowshop. We first present a pseudo-polynomial time dynamic programming algorithm to solve the (m,2)-PFS problem optimally, for any fixed m, based on an earlier idea for solving the (2,2)-PFS problem. Using the dynamic programming algorithm as a subroutine, we design a fully polynomial-time approximation scheme (FPTAS) for the (m,2)-PFS problem.
Author Tong, Weitian
Hu, Jueliang
Lin, Guohui
Dong, Jianming
Wang, Xueshi
Xu, Yinfeng
Luo, Taibo
Author_xml – sequence: 1
  givenname: Jianming
  surname: Dong
  fullname: Dong, Jianming
  organization: Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
– sequence: 2
  givenname: Weitian
  surname: Tong
  fullname: Tong, Weitian
  organization: Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
– sequence: 3
  givenname: Taibo
  surname: Luo
  fullname: Luo, Taibo
  organization: Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
– sequence: 4
  givenname: Xueshi
  surname: Wang
  fullname: Wang, Xueshi
  organization: Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
– sequence: 5
  givenname: Jueliang
  surname: Hu
  fullname: Hu, Jueliang
  organization: Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
– sequence: 6
  givenname: Yinfeng
  surname: Xu
  fullname: Xu, Yinfeng
  organization: Business School, Sichuan University, Chengdu, Sichuan 610065, China
– sequence: 7
  givenname: Guohui
  surname: Lin
  fullname: Lin, Guohui
  email: guohui@ualberta.ca
  organization: Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
BookMark eNp9j81KAzEUhYNUsK0-gLu8wIzJTCaZ4KoUq0JBwboOmfzYDNPJkASLb29KXbno5cA9m-_AtwCz0Y8GgHuMSowwfejLpGJZ5VoikkOvwBy3jBdVxckMzFGNSFFz1tyARYw9ytcwOgdkNcLN-271Aa0PMO0NnGSQw2AGmI6-iEl-GWgHf4x7P8Ep-G4wh1twbeUQzd3fX4LPzdNu_VJs355f16ttoQjGqbC0s6rDFZdUMaulVI3UDJm6o1WrKVa6IYp0dSs50zViiLWGE9bSBjEuGa-XgJ13VfAxBmOFckkm58cUpBsERuIkL3qR5cVJXiCSQzOJ_5FTcAcZfi4yj2fGZKVvZ4KIyplRGe2CUUlo7y7Qv9Hrc6o
CitedBy_id crossref_primary_10_1016_j_tcs_2017_09_018
crossref_primary_10_1016_j_tcs_2018_04_017
crossref_primary_10_1016_j_tcs_2022_04_044
crossref_primary_10_1016_j_tcs_2018_04_005
crossref_primary_10_1007_s10845_020_01561_6
crossref_primary_10_1016_j_tcs_2022_04_004
crossref_primary_10_1002_nav_22076
crossref_primary_10_1016_j_tcs_2019_01_017
crossref_primary_10_1016_j_ejor_2019_08_019
crossref_primary_10_1016_j_cor_2020_105006
crossref_primary_10_1016_j_ejor_2023_02_001
crossref_primary_10_1007_s10878_018_0314_6
crossref_primary_10_1016_j_dam_2025_08_004
crossref_primary_10_1007_s10951_019_00633_7
crossref_primary_10_1016_j_tcs_2017_05_016
crossref_primary_10_1016_j_cor_2024_106850
crossref_primary_10_1016_j_tcs_2019_08_028
crossref_primary_10_1016_j_cor_2025_107044
crossref_primary_10_1007_s10878_024_01107_z
crossref_primary_10_1007_s10479_024_05860_6
Cites_doi 10.1007/BF01585870
10.1287/opre.45.2.288
10.1287/opre.26.1.36
10.1016/0167-6377(94)90026-4
10.1080/07408170008967427
10.1080/07408179608966258
10.1145/7531.7535
10.1080/00207549108948025
10.1287/moor.1.2.117
10.1145/321921.321934
10.1057/jors.1995.28
10.1057/jors.1988.63
10.1016/0377-2217(94)00235-5
10.1002/nav.3800010110
10.1111/j.1468-0394.2005.00297.x
10.1016/j.ejor.2011.08.007
10.1287/opre.44.6.891
10.1023/A:1018976827443
10.1016/j.ejor.2009.09.024
10.1016/S0304-3975(98)00157-1
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2016.04.046
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 72
ExternalDocumentID 10_1016_j_tcs_2016_04_046
S0304397516302250
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
G-2
HZ~
R2-
SEW
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c411t-f6bfcb129a6c7fdaac5ad70e3b628d61cd54c4b38a97d307078e947865079a793
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390971400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Tue Nov 18 21:00:08 EST 2025
Sat Nov 29 07:21:53 EST 2025
Fri Feb 23 02:30:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiprocessor scheduling
Fully polynomial-time approximation scheme
Makespan
Dynamic programming
Two-stage flowshop scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-f6bfcb129a6c7fdaac5ad70e3b628d61cd54c4b38a97d307078e947865079a793
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_tcs_2016_04_046
crossref_primary_10_1016_j_tcs_2016_04_046
elsevier_sciencedirect_doi_10_1016_j_tcs_2016_04_046
PublicationCentury 2000
PublicationDate 2017-01-02
PublicationDateYYYYMMDD 2017-01-02
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-02
  day: 02
PublicationDecade 2010
PublicationTitle Theoretical computer science
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen (br0010) 1995; 46
Conway, Maxwell, Miller (br0030) 1967
Jansen, Sviridenko (br0140) 2000; vol. 1770
Williamson, Hall, Hoogeveen, Hurkens, Lenstra, Sevastj́anov, Shmoys (br0220) 1997; 45
Garey, Johnson (br0040) 1979
Johnson (br0150) 1954; 1
Gupta, Hariri, Potts (br0080) 1997; 69
Chen, Glass, Potts, Strusevich (br0020) 1996; 44
Hochbaum, Shmoys (br0120) 1987; 34
Hall (br0100) 1998; 82
Gonzalez, Sahni (br0060) 1978; 26
Gupta (br0070) 1988; 39
Hoogeveen, Lenstra, Veltman (br0130) 1996; 89
Gupta, Tunc (br0090) 1991; 29
Sahni (br0180) 1976; 23
Zhang, van de Velde (br0230) 2012; 216
Vairaktarakis, Elhafsi (br0200) 2000; 32
Garey, Johnson, Sethi (br0050) 1976; 1
Schuurman, Woeginger (br0190) 2000; 237
Lee, Vairaktarakis (br0160) 1994; 16
He, Kusiak, Artiba (br0110) 1996; 28
Wang (br0210) 2005; 22
Ruiz, Vázquez-Rodríguez (br0170) 2010; 205
Lee (10.1016/j.tcs.2016.04.046_br0160) 1994; 16
Vairaktarakis (10.1016/j.tcs.2016.04.046_br0200) 2000; 32
Garey (10.1016/j.tcs.2016.04.046_br0050) 1976; 1
Gupta (10.1016/j.tcs.2016.04.046_br0090) 1991; 29
Sahni (10.1016/j.tcs.2016.04.046_br0180) 1976; 23
Wang (10.1016/j.tcs.2016.04.046_br0210) 2005; 22
Hochbaum (10.1016/j.tcs.2016.04.046_br0120) 1987; 34
Hoogeveen (10.1016/j.tcs.2016.04.046_br0130) 1996; 89
Williamson (10.1016/j.tcs.2016.04.046_br0220) 1997; 45
Chen (10.1016/j.tcs.2016.04.046_br0010) 1995; 46
Garey (10.1016/j.tcs.2016.04.046_br0040) 1979
Chen (10.1016/j.tcs.2016.04.046_br0020) 1996; 44
Gupta (10.1016/j.tcs.2016.04.046_br0080) 1997; 69
Conway (10.1016/j.tcs.2016.04.046_br0030) 1967
Hall (10.1016/j.tcs.2016.04.046_br0100) 1998; 82
Johnson (10.1016/j.tcs.2016.04.046_br0150) 1954; 1
Schuurman (10.1016/j.tcs.2016.04.046_br0190) 2000; 237
Jansen (10.1016/j.tcs.2016.04.046_br0140) 2000; vol. 1770
Ruiz (10.1016/j.tcs.2016.04.046_br0170) 2010; 205
Zhang (10.1016/j.tcs.2016.04.046_br0230) 2012; 216
Gonzalez (10.1016/j.tcs.2016.04.046_br0060) 1978; 26
Gupta (10.1016/j.tcs.2016.04.046_br0070) 1988; 39
He (10.1016/j.tcs.2016.04.046_br0110) 1996; 28
References_xml – volume: 26
  start-page: 36
  year: 1978
  end-page: 52
  ident: br0060
  article-title: Flowshop and jobshop schedules: complexity and approximation
  publication-title: Oper. Res.
– volume: 1
  start-page: 61
  year: 1954
  end-page: 68
  ident: br0150
  article-title: Optimal two- and three-stage production schedules with setup times included
  publication-title: Nav. Res. Logist. Q.
– volume: 69
  start-page: 171
  year: 1997
  end-page: 191
  ident: br0080
  article-title: Scheduling a two-stage hybrid flow shop with parallel machines at the first stage
  publication-title: Ann. Oper. Res.
– volume: 1
  start-page: 117
  year: 1976
  end-page: 129
  ident: br0050
  article-title: The complexity of flowshop and jobshop scheduling
  publication-title: Math. Oper. Res.
– volume: 32
  start-page: 687
  year: 2000
  end-page: 699
  ident: br0200
  article-title: The use of flowlines to simplify routing complexity in two-stage flowshops
  publication-title: IIE Trans.
– volume: 216
  start-page: 544
  year: 2012
  end-page: 552
  ident: br0230
  article-title: Approximation algorithms for the parallel flow shop problem
  publication-title: European J. Oper. Res.
– volume: 22
  start-page: 78
  year: 2005
  end-page: 85
  ident: br0210
  article-title: Flexible flow shop scheduling: optimum, heuristics and artificial intelligence solutions
  publication-title: Expert Syst.
– volume: 45
  start-page: 288
  year: 1997
  end-page: 294
  ident: br0220
  article-title: Short shop schedules
  publication-title: Oper. Res.
– year: 1979
  ident: br0040
  article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
– volume: 29
  start-page: 1489
  year: 1991
  end-page: 1502
  ident: br0090
  article-title: Schedules for a two-stage hybrid flowshop with parallel machines at the second stage
  publication-title: Int. J. Prod. Res.
– volume: 28
  start-page: 129
  year: 1996
  end-page: 139
  ident: br0110
  article-title: A scheduling problem in glass manufacturing
  publication-title: IIE Trans.
– volume: 39
  start-page: 359
  year: 1988
  end-page: 364
  ident: br0070
  article-title: Two-stage, hybrid flowshop scheduling problem
  publication-title: J. Oper. Res. Soc.
– volume: vol. 1770
  start-page: 455
  year: 2000
  end-page: 465
  ident: br0140
  article-title: Polynomial time approximation schemes for the multiprocessor open and flow shop scheduling problem
  publication-title: STACS
– year: 1967
  ident: br0030
  article-title: Theory of Scheduling
– volume: 205
  start-page: 1
  year: 2010
  end-page: 18
  ident: br0170
  article-title: The hybrid flow shop scheduling problem
  publication-title: European J. Oper. Res.
– volume: 16
  start-page: 149
  year: 1994
  end-page: 158
  ident: br0160
  article-title: Minimizing makespan in hybrid flowshops
  publication-title: Oper. Res. Lett.
– volume: 82
  start-page: 175
  year: 1998
  end-page: 190
  ident: br0100
  article-title: Approximability of flow shop scheduling
  publication-title: Math. Program.
– volume: 89
  start-page: 172
  year: 1996
  end-page: 175
  ident: br0130
  article-title: Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard
  publication-title: European J. Oper. Res.
– volume: 46
  start-page: 234
  year: 1995
  end-page: 244
  ident: br0010
  article-title: Analysis of classes of heuristics for scheduling a two-stage flow shop with parallel machines at one stage
  publication-title: J. Oper. Res. Soc.
– volume: 44
  start-page: 891
  year: 1996
  end-page: 898
  ident: br0020
  article-title: A new heuristic for three-machine flow shop scheduling
  publication-title: Oper. Res.
– volume: 23
  start-page: 116
  year: 1976
  end-page: 127
  ident: br0180
  article-title: Algorithms for scheduling independent tasks
  publication-title: J. ACM
– volume: 34
  start-page: 144
  year: 1987
  end-page: 162
  ident: br0120
  article-title: Using dual approximation algorithms for scheduling problems theoretical and practical results
  publication-title: J. ACM
– volume: 237
  start-page: 105
  year: 2000
  end-page: 122
  ident: br0190
  article-title: A polynomial time approximation scheme for the two-stage multiprocessor flow shop problem
  publication-title: Theoret. Comput. Sci.
– volume: 82
  start-page: 175
  year: 1998
  ident: 10.1016/j.tcs.2016.04.046_br0100
  article-title: Approximability of flow shop scheduling
  publication-title: Math. Program.
  doi: 10.1007/BF01585870
– volume: 45
  start-page: 288
  year: 1997
  ident: 10.1016/j.tcs.2016.04.046_br0220
  article-title: Short shop schedules
  publication-title: Oper. Res.
  doi: 10.1287/opre.45.2.288
– volume: 26
  start-page: 36
  year: 1978
  ident: 10.1016/j.tcs.2016.04.046_br0060
  article-title: Flowshop and jobshop schedules: complexity and approximation
  publication-title: Oper. Res.
  doi: 10.1287/opre.26.1.36
– volume: 16
  start-page: 149
  year: 1994
  ident: 10.1016/j.tcs.2016.04.046_br0160
  article-title: Minimizing makespan in hybrid flowshops
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(94)90026-4
– volume: 32
  start-page: 687
  year: 2000
  ident: 10.1016/j.tcs.2016.04.046_br0200
  article-title: The use of flowlines to simplify routing complexity in two-stage flowshops
  publication-title: IIE Trans.
  doi: 10.1080/07408170008967427
– year: 1967
  ident: 10.1016/j.tcs.2016.04.046_br0030
– volume: 28
  start-page: 129
  year: 1996
  ident: 10.1016/j.tcs.2016.04.046_br0110
  article-title: A scheduling problem in glass manufacturing
  publication-title: IIE Trans.
  doi: 10.1080/07408179608966258
– volume: 34
  start-page: 144
  year: 1987
  ident: 10.1016/j.tcs.2016.04.046_br0120
  article-title: Using dual approximation algorithms for scheduling problems theoretical and practical results
  publication-title: J. ACM
  doi: 10.1145/7531.7535
– volume: vol. 1770
  start-page: 455
  year: 2000
  ident: 10.1016/j.tcs.2016.04.046_br0140
  article-title: Polynomial time approximation schemes for the multiprocessor open and flow shop scheduling problem
– volume: 29
  start-page: 1489
  year: 1991
  ident: 10.1016/j.tcs.2016.04.046_br0090
  article-title: Schedules for a two-stage hybrid flowshop with parallel machines at the second stage
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207549108948025
– volume: 1
  start-page: 117
  year: 1976
  ident: 10.1016/j.tcs.2016.04.046_br0050
  article-title: The complexity of flowshop and jobshop scheduling
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1.2.117
– volume: 23
  start-page: 116
  year: 1976
  ident: 10.1016/j.tcs.2016.04.046_br0180
  article-title: Algorithms for scheduling independent tasks
  publication-title: J. ACM
  doi: 10.1145/321921.321934
– volume: 46
  start-page: 234
  year: 1995
  ident: 10.1016/j.tcs.2016.04.046_br0010
  article-title: Analysis of classes of heuristics for scheduling a two-stage flow shop with parallel machines at one stage
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1995.28
– volume: 39
  start-page: 359
  year: 1988
  ident: 10.1016/j.tcs.2016.04.046_br0070
  article-title: Two-stage, hybrid flowshop scheduling problem
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1988.63
– year: 1979
  ident: 10.1016/j.tcs.2016.04.046_br0040
– volume: 89
  start-page: 172
  year: 1996
  ident: 10.1016/j.tcs.2016.04.046_br0130
  article-title: Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard
  publication-title: European J. Oper. Res.
  doi: 10.1016/0377-2217(94)00235-5
– volume: 1
  start-page: 61
  year: 1954
  ident: 10.1016/j.tcs.2016.04.046_br0150
  article-title: Optimal two- and three-stage production schedules with setup times included
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800010110
– volume: 22
  start-page: 78
  year: 2005
  ident: 10.1016/j.tcs.2016.04.046_br0210
  article-title: Flexible flow shop scheduling: optimum, heuristics and artificial intelligence solutions
  publication-title: Expert Syst.
  doi: 10.1111/j.1468-0394.2005.00297.x
– volume: 216
  start-page: 544
  year: 2012
  ident: 10.1016/j.tcs.2016.04.046_br0230
  article-title: Approximation algorithms for the parallel flow shop problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2011.08.007
– volume: 44
  start-page: 891
  year: 1996
  ident: 10.1016/j.tcs.2016.04.046_br0020
  article-title: A new heuristic for three-machine flow shop scheduling
  publication-title: Oper. Res.
  doi: 10.1287/opre.44.6.891
– volume: 69
  start-page: 171
  year: 1997
  ident: 10.1016/j.tcs.2016.04.046_br0080
  article-title: Scheduling a two-stage hybrid flow shop with parallel machines at the first stage
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1018976827443
– volume: 205
  start-page: 1
  year: 2010
  ident: 10.1016/j.tcs.2016.04.046_br0170
  article-title: The hybrid flow shop scheduling problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2009.09.024
– volume: 237
  start-page: 105
  year: 2000
  ident: 10.1016/j.tcs.2016.04.046_br0190
  article-title: A polynomial time approximation scheme for the two-stage multiprocessor flow shop problem
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(98)00157-1
SSID ssj0000576
Score 2.327285
Snippet We consider the NP-hard m-parallel two-stage flowshop problem, abbreviated as the (m,2)-PFS problem, where we need to schedule n jobs to m parallel identical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 64
SubjectTerms Dynamic programming
Fully polynomial-time approximation scheme
Makespan
Multiprocessor scheduling
Two-stage flowshop scheduling
Title An FPTAS for the parallel two-stage flowshop problem
URI https://dx.doi.org/10.1016/j.tcs.2016.04.046
Volume 657
WOSCitedRecordID wos000390971400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQywEOPAqI8pIPnIhS5eHE8TFCrQCVqlKD2Fvk2A7dKk1W3ZT25zN-ZaMWECAhraKVN961PN_OfBnb3yD0VoFXZIQ3Wk-7CIH_y5BDoA9VHqVNWkiRNMbSh_ToqFgs2LHbkLk25QRo3xfX12z1X00NbWBsfXT2L8w9fSk0wHswOlzB7HD9I8OXfXBwXJUn0wZCre7ddaoLxqshBDL4TQVtN1ytT4dV4OrJzClqNTvaKFzNh8AFyon2-o28AK5zH_xMrtq2f1XLcYa7w0uTkK34shk2GXx76wLi0ulynnyIqUk-bB5Vb5-KsSex9GoLsxVR9pR1rAVlYZLYgsbe8-ZWm9r5Tqtm7qKwredzy7_bVMPZ3ii01HqcG5lackNL20TnEz0KPQggnMBTdFpnO6EZA-e9XX7cX3zaxOuM2hVtN2q_9m12Ad74oZ-zlxkjqR6hB-5RApcWAo_RHdXvoIe-TAd2XnsH3f88SfOunyBS9tjgAwM-MHyAPT7whA_s8YEdPp6iLwf71fsPoSudEQoSx2PY5k0rGuByPBe0lZyLjEsaqbTJk0LmsZAZEQT-jJxRmRrJJ8UILYCvU8bBZz9DW_3Qq-cIK8WyQmoZftESSmQRySTlWlgxEjyO5C6K_JTUwunK6_ImXe03EJ7VMIu1nsU6IvDKd9G7qcvKiqr87mbi57l2YLdsrwZQ_Lrbi3_r9hLd2-D8FdoaLy7Va3RXfB-X64s3Djo_AAzEgpI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+FPTAS+for+the+parallel+two-stage+flowshop+problem&rft.jtitle=Theoretical+computer+science&rft.au=Dong%2C+Jianming&rft.au=Tong%2C+Weitian&rft.au=Luo%2C+Taibo&rft.au=Wang%2C+Xueshi&rft.date=2017-01-02&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=657&rft.spage=64&rft.epage=72&rft_id=info:doi/10.1016%2Fj.tcs.2016.04.046&rft.externalDocID=S0304397516302250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon