An FPTAS for the parallel two-stage flowshop problem

We consider the NP-hard m-parallel two-stage flowshop problem, abbreviated as the (m,2)-PFS problem, where we need to schedule n jobs to m parallel identical two-stage flowshops in order to minimize the makespan, i.e. the maximum completion time of all the jobs on the m flowshops. The (m,2)-PFS prob...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 657; s. 64 - 72
Hlavní autori: Dong, Jianming, Tong, Weitian, Luo, Taibo, Wang, Xueshi, Hu, Jueliang, Xu, Yinfeng, Lin, Guohui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 02.01.2017
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the NP-hard m-parallel two-stage flowshop problem, abbreviated as the (m,2)-PFS problem, where we need to schedule n jobs to m parallel identical two-stage flowshops in order to minimize the makespan, i.e. the maximum completion time of all the jobs on the m flowshops. The (m,2)-PFS problem can be decomposed into two subproblems: to assign the n jobs to the m parallel flowshops, and for each flowshop to schedule the jobs assigned to the flowshop. We first present a pseudo-polynomial time dynamic programming algorithm to solve the (m,2)-PFS problem optimally, for any fixed m, based on an earlier idea for solving the (2,2)-PFS problem. Using the dynamic programming algorithm as a subroutine, we design a fully polynomial-time approximation scheme (FPTAS) for the (m,2)-PFS problem.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2016.04.046