Hedging Uncertainty: Approximation Algorithms for Stochastic Optimization Problems

We study two-stage, finite-scenario stochastic versions of several combinatorial optimization problems, and provide nearly tight approximation algorithms for them. Our problems range from the graph-theoretic (shortest path, vertex cover, facility location) to set-theoretic (set cover, bin packing),...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 108; no. 1; pp. 97 - 114
Main Authors: Ravi, R., Sinha, Amitabh
Format: Journal Article
Language:English
Published: Heidelberg Springer 01.08.2006
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study two-stage, finite-scenario stochastic versions of several combinatorial optimization problems, and provide nearly tight approximation algorithms for them. Our problems range from the graph-theoretic (shortest path, vertex cover, facility location) to set-theoretic (set cover, bin packing), and contain representatives with different approximation ratios. The approximation ratio of the stochastic variant of a typical problem is found to be of the same order of magnitude as its deterministic counterpart. Furthermore, we show that common techniques for designing approximation algorithms such as LP rounding, the primal-dual method, and the greedy algorithm, can be adapted to obtain these results. [PUBLICATION ABSTRACT]
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-005-0673-5