Hedging Uncertainty: Approximation Algorithms for Stochastic Optimization Problems
We study two-stage, finite-scenario stochastic versions of several combinatorial optimization problems, and provide nearly tight approximation algorithms for them. Our problems range from the graph-theoretic (shortest path, vertex cover, facility location) to set-theoretic (set cover, bin packing),...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 108; číslo 1; s. 97 - 114 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Heidelberg
Springer
01.08.2006
Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study two-stage, finite-scenario stochastic versions of several combinatorial optimization problems, and provide nearly tight approximation algorithms for them. Our problems range from the graph-theoretic (shortest path, vertex cover, facility location) to set-theoretic (set cover, bin packing), and contain representatives with different approximation ratios. The approximation ratio of the stochastic variant of a typical problem is found to be of the same order of magnitude as its deterministic counterpart. Furthermore, we show that common techniques for designing approximation algorithms such as LP rounding, the primal-dual method, and the greedy algorithm, can be adapted to obtain these results. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-005-0673-5 |