Hedging Uncertainty: Approximation Algorithms for Stochastic Optimization Problems

We study two-stage, finite-scenario stochastic versions of several combinatorial optimization problems, and provide nearly tight approximation algorithms for them. Our problems range from the graph-theoretic (shortest path, vertex cover, facility location) to set-theoretic (set cover, bin packing),...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 108; číslo 1; s. 97 - 114
Hlavní autori: Ravi, R., Sinha, Amitabh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Heidelberg Springer 01.08.2006
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study two-stage, finite-scenario stochastic versions of several combinatorial optimization problems, and provide nearly tight approximation algorithms for them. Our problems range from the graph-theoretic (shortest path, vertex cover, facility location) to set-theoretic (set cover, bin packing), and contain representatives with different approximation ratios. The approximation ratio of the stochastic variant of a typical problem is found to be of the same order of magnitude as its deterministic counterpart. Furthermore, we show that common techniques for designing approximation algorithms such as LP rounding, the primal-dual method, and the greedy algorithm, can be adapted to obtain these results. [PUBLICATION ABSTRACT]
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-005-0673-5