Quantics Tensor Cross Interpolation for High-Resolution Parsimonious Representations of Multivariate Functions

Multivariate functions of continuous variables arise in countless branches of science. Numerical computations with such functions typically involve a compromise between two contrary desiderata: accurate resolution of the functional dependence, versus parsimonious memory usage. Recently, two promisin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters Jg. 132; H. 5; S. 056501
Hauptverfasser: Ritter, Marc K., Núñez Fernández, Yuriel, Wallerberger, Markus, von Delft, Jan, Shinaoka, Hiroshi, Waintal, Xavier
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Physical Society 02.02.2024
Schlagworte:
ISSN:0031-9007, 1079-7114, 1079-7114
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multivariate functions of continuous variables arise in countless branches of science. Numerical computations with such functions typically involve a compromise between two contrary desiderata: accurate resolution of the functional dependence, versus parsimonious memory usage. Recently, two promising strategies have emerged for satisfying both requirements: (i) The quantics representation, which expresses functions as multi-index tensors, with each index representing one bit of a binary encoding of one of the variables; and (ii) tensor cross interpolation (TCI), which, if applicable, yields parsimonious interpolations for multi-index tensors. Here, we present a strategy, quantics TCI, which combines the advantages of both schemes. We illustrate its potential with an application from condensed matter physics: the computation of Brillouin zone integrals.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.132.056501