Magnetic Resonance-Based Electric Properties Tomography via Green's Integral Identity

A new approach to Magnetic Resonance-based Electric Properties Tomography (EPT) is presented. The method applies Green's integral identity to the equation that regulates the EPT problem. The resultant integral equations are used to impose the consistency of the measured values of the radiofrequ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 42029 - 42044
Hlavní autoři: Zilberti, Luca, Arduino, Alessandro, Zanovello, Umberto, Martinez, Jessica A., Moulin, Kevin, Troia, Adriano, Bottauscio, Oriano
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A new approach to Magnetic Resonance-based Electric Properties Tomography (EPT) is presented. The method applies Green's integral identity to the equation that regulates the EPT problem. The resultant integral equations are used to impose the consistency of the measured values of the radiofrequency field. This is achieved by seeking dielectric properties values that allow satisfying the identity within suitable kernels of voxels. In each kernel, an overdetermined system of equations is written, and the corresponding problem is solved in the least squares sense, providing an index of trustworthiness of the solution. Both the complete formulation and its phase-based approximation are presented. The application of a filter, which post-processes the raw results based on the index of trustworthiness, is also discussed. The performance of the method is evaluated on synthetic data and experimental measurements acquired on a heterogeneous brain phantom and on four human volunteers. The reconstructions are compared to those produced through a Helmholtz-EPT with adaptive kernel. The new EPT method performs well in all tests.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2025.3546036