Morphological analysis of the brain subcortical gray structures in restless legs syndrome

Although several studies have shown the involvement of specific structures of the central nervous system, the dopaminergic system, and iron metabolism in restless legs syndrome (RLS), the exact location and extent of its anatomical substrate is not yet known. The scope of this new study was to inves...

Full description

Saved in:
Bibliographic Details
Published in:Sleep medicine Vol. 88; pp. 74 - 80
Main Authors: Mogavero, Maria P., Mezzapesa, Domenico M., Savarese, Mariantonietta, DelRosso, Lourdes M., Lanza, Giuseppe, Ferri, Raffaele
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.12.2021
Subjects:
ISSN:1389-9457, 1878-5506, 1878-5506
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Although several studies have shown the involvement of specific structures of the central nervous system, the dopaminergic system, and iron metabolism in restless legs syndrome (RLS), the exact location and extent of its anatomical substrate is not yet known. The scope of this new study was to investigate the brain subcortical gray structures, by means of structural magnetic resonance imaging (MRI) studies, in RLS patients in order to assess the presence of any volume or shape abnormalities involving these structures. Thirty-three normal controls (24 females and nine males) and 45 RLS patients (34 females and 11 males) were retrospectively recruited and underwent a 1.5 Tesla MRI study with two-dimensional T1 sequences in the sagittal plane. Post-processing was performed by means of the Functional Magnetic Resonance Imaging of the Brain Analysis Group Integrated Registration and Segmentation Tool (FIRST) software, and both volumetric and morphological analyses of the thalamus, caudate, putamen, globus pallidus, brainstem, hippocampus, and amygdala, bilaterally, were carried out. A statistically significant volumetric reduction in the left amygdala and left globus pallidus was found in subjects with RLS, as well as large surface morphological alterations affecting the amygdala bilaterally and other less widespread surface changes in both hippocampi, the right caudate, the left globus pallidus, and the left putamen. These findings seem to indicate that the basic mechanisms of RLS might include a pathway involving not only the hypothalamus-spinal dopaminergic circuit (nucleus A11), but also pathways including the basal ganglia and structures that are part of the limbic system; moreover, structural alterations in RLS seem to concern the morphology as well as the volume of the above structures. The role of basal ganglia in the complex neurophysiological and neurochemical mechanism of RLS needs to carefully reconsidered. •The exact location and extent of the anatomical substrate of RLS is not yet known.•Volumetric reduction in the left amygdala and left globus pallidus was found in RLS.•Surface of the amygdalae, hippocampi, caudate, globus pallidus, and putamen was abnormal.•The basal ganglia might play an important role in the mechanisms of RLS.
AbstractList Although several studies have shown the involvement of specific structures of the central nervous system, the dopaminergic system, and iron metabolism in restless legs syndrome (RLS), the exact location and extent of its anatomical substrate is not yet known. The scope of this new study was to investigate the brain subcortical gray structures, by means of structural magnetic resonance imaging (MRI) studies, in RLS patients in order to assess the presence of any volume or shape abnormalities involving these structures. Thirty-three normal controls (24 females and nine males) and 45 RLS patients (34 females and 11 males) were retrospectively recruited and underwent a 1.5 Tesla MRI study with two-dimensional T1 sequences in the sagittal plane. Post-processing was performed by means of the Functional Magnetic Resonance Imaging of the Brain Analysis Group Integrated Registration and Segmentation Tool (FIRST) software, and both volumetric and morphological analyses of the thalamus, caudate, putamen, globus pallidus, brainstem, hippocampus, and amygdala, bilaterally, were carried out. A statistically significant volumetric reduction in the left amygdala and left globus pallidus was found in subjects with RLS, as well as large surface morphological alterations affecting the amygdala bilaterally and other less widespread surface changes in both hippocampi, the right caudate, the left globus pallidus, and the left putamen. These findings seem to indicate that the basic mechanisms of RLS might include a pathway involving not only the hypothalamus-spinal dopaminergic circuit (nucleus A11), but also pathways including the basal ganglia and structures that are part of the limbic system; moreover, structural alterations in RLS seem to concern the morphology as well as the volume of the above structures. The role of basal ganglia in the complex neurophysiological and neurochemical mechanism of RLS needs to carefully reconsidered.
Although several studies have shown the involvement of specific structures of the central nervous system, the dopaminergic system, and iron metabolism in restless legs syndrome (RLS), the exact location and extent of its anatomical substrate is not yet known. The scope of this new study was to investigate the brain subcortical gray structures, by means of structural magnetic resonance imaging (MRI) studies, in RLS patients in order to assess the presence of any volume or shape abnormalities involving these structures. Thirty-three normal controls (24 females and nine males) and 45 RLS patients (34 females and 11 males) were retrospectively recruited and underwent a 1.5 Tesla MRI study with two-dimensional T1 sequences in the sagittal plane. Post-processing was performed by means of the Functional Magnetic Resonance Imaging of the Brain Analysis Group Integrated Registration and Segmentation Tool (FIRST) software, and both volumetric and morphological analyses of the thalamus, caudate, putamen, globus pallidus, brainstem, hippocampus, and amygdala, bilaterally, were carried out. A statistically significant volumetric reduction in the left amygdala and left globus pallidus was found in subjects with RLS, as well as large surface morphological alterations affecting the amygdala bilaterally and other less widespread surface changes in both hippocampi, the right caudate, the left globus pallidus, and the left putamen. These findings seem to indicate that the basic mechanisms of RLS might include a pathway involving not only the hypothalamus-spinal dopaminergic circuit (nucleus A11), but also pathways including the basal ganglia and structures that are part of the limbic system; moreover, structural alterations in RLS seem to concern the morphology as well as the volume of the above structures. The role of basal ganglia in the complex neurophysiological and neurochemical mechanism of RLS needs to carefully reconsidered. •The exact location and extent of the anatomical substrate of RLS is not yet known.•Volumetric reduction in the left amygdala and left globus pallidus was found in RLS.•Surface of the amygdalae, hippocampi, caudate, globus pallidus, and putamen was abnormal.•The basal ganglia might play an important role in the mechanisms of RLS.
Although several studies have shown the involvement of specific structures of the central nervous system, the dopaminergic system, and iron metabolism in restless legs syndrome (RLS), the exact location and extent of its anatomical substrate is not yet known. The scope of this new study was to investigate the brain subcortical gray structures, by means of structural magnetic resonance imaging (MRI) studies, in RLS patients in order to assess the presence of any volume or shape abnormalities involving these structures.BACKGROUNDAlthough several studies have shown the involvement of specific structures of the central nervous system, the dopaminergic system, and iron metabolism in restless legs syndrome (RLS), the exact location and extent of its anatomical substrate is not yet known. The scope of this new study was to investigate the brain subcortical gray structures, by means of structural magnetic resonance imaging (MRI) studies, in RLS patients in order to assess the presence of any volume or shape abnormalities involving these structures.Thirty-three normal controls (24 females and nine males) and 45 RLS patients (34 females and 11 males) were retrospectively recruited and underwent a 1.5 Tesla MRI study with two-dimensional T1 sequences in the sagittal plane. Post-processing was performed by means of the Functional Magnetic Resonance Imaging of the Brain Analysis Group Integrated Registration and Segmentation Tool (FIRST) software, and both volumetric and morphological analyses of the thalamus, caudate, putamen, globus pallidus, brainstem, hippocampus, and amygdala, bilaterally, were carried out.METHODSThirty-three normal controls (24 females and nine males) and 45 RLS patients (34 females and 11 males) were retrospectively recruited and underwent a 1.5 Tesla MRI study with two-dimensional T1 sequences in the sagittal plane. Post-processing was performed by means of the Functional Magnetic Resonance Imaging of the Brain Analysis Group Integrated Registration and Segmentation Tool (FIRST) software, and both volumetric and morphological analyses of the thalamus, caudate, putamen, globus pallidus, brainstem, hippocampus, and amygdala, bilaterally, were carried out.A statistically significant volumetric reduction in the left amygdala and left globus pallidus was found in subjects with RLS, as well as large surface morphological alterations affecting the amygdala bilaterally and other less widespread surface changes in both hippocampi, the right caudate, the left globus pallidus, and the left putamen.RESULTSA statistically significant volumetric reduction in the left amygdala and left globus pallidus was found in subjects with RLS, as well as large surface morphological alterations affecting the amygdala bilaterally and other less widespread surface changes in both hippocampi, the right caudate, the left globus pallidus, and the left putamen.These findings seem to indicate that the basic mechanisms of RLS might include a pathway involving not only the hypothalamus-spinal dopaminergic circuit (nucleus A11), but also pathways including the basal ganglia and structures that are part of the limbic system; moreover, structural alterations in RLS seem to concern the morphology as well as the volume of the above structures. The role of basal ganglia in the complex neurophysiological and neurochemical mechanism of RLS needs to carefully reconsidered.CONCLUSIONSThese findings seem to indicate that the basic mechanisms of RLS might include a pathway involving not only the hypothalamus-spinal dopaminergic circuit (nucleus A11), but also pathways including the basal ganglia and structures that are part of the limbic system; moreover, structural alterations in RLS seem to concern the morphology as well as the volume of the above structures. The role of basal ganglia in the complex neurophysiological and neurochemical mechanism of RLS needs to carefully reconsidered.
Author Lanza, Giuseppe
Savarese, Mariantonietta
Mezzapesa, Domenico M.
Mogavero, Maria P.
DelRosso, Lourdes M.
Ferri, Raffaele
Author_xml – sequence: 1
  givenname: Maria P.
  orcidid: 0000-0001-6662-2281
  surname: Mogavero
  fullname: Mogavero, Maria P.
  organization: Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Italy
– sequence: 2
  givenname: Domenico M.
  orcidid: 0000-0002-5098-6379
  surname: Mezzapesa
  fullname: Mezzapesa, Domenico M.
  organization: Neurology Unit and Stroke Center, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
– sequence: 3
  givenname: Mariantonietta
  surname: Savarese
  fullname: Savarese, Mariantonietta
  organization: Neurology Unit and Stroke Center, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
– sequence: 4
  givenname: Lourdes M.
  orcidid: 0000-0003-3349-8426
  surname: DelRosso
  fullname: DelRosso, Lourdes M.
  organization: Seattle Children's Hospital and University of Washington, Seattle, WA, USA
– sequence: 5
  givenname: Giuseppe
  orcidid: 0000-0002-5659-662X
  surname: Lanza
  fullname: Lanza, Giuseppe
  organization: Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
– sequence: 6
  givenname: Raffaele
  orcidid: 0000-0001-6937-3065
  surname: Ferri
  fullname: Ferri, Raffaele
  email: rferri@oasi.en.it
  organization: Department of Neurology I.C., Oasi Research Institute - IRCCS, Troina, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34740168$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u3CAURlGVqPlpn6BS5WU3ngLGxlbVRRW1TaRE2aSLrhC-vkyYMjAFHMlvXyaTbLJoVhddvvMJHc7IkQ8eCfnA6IpR1n3erJJD3K045axsVpS3b8gp62Vfty3tjsq56Yd6EK08IWcpbShlkvXiLTlphBSloj8lv29C3N0HF9YWtKu0125JNlXBVPkeqzFq66s0jxBifkyso16qlOMMeY6YqnJdRnaYUuVwnaq0-CmGLb4jx0a7hO-f5jn59eP73cVlfX378-ri23UNgrFcc9MLwFZ2xoycjtPApAGQRoxyEtPIurHjgvcALbSMSWSCATDTYQfdILhpzsmnQ-8uhr9zeYra2gTonPYY5qR4W2JDU5SV6Men6DxucVK7aLc6LupZRwkMhwDEkFJEo8BmnW3wuYhwilG1V6826lG92qvfL4v6wjYv2Of6_1NfDxQWRQ8Wo0pg0QNONiJkNQX7Cv_lBQ_O-v1P_cHlVfofu3yz6A
CitedBy_id crossref_primary_10_1016_j_smrv_2025_102147
crossref_primary_10_1093_sleep_zsad326
crossref_primary_10_1080_23279095_2022_2043326
crossref_primary_10_3389_fneur_2023_1219881
crossref_primary_10_1002_mdc3_14254
crossref_primary_10_1002_mds_30125
crossref_primary_10_1097_YIC_0000000000000571
crossref_primary_10_1111_jsr_14104
crossref_primary_10_1016_j_sleep_2025_02_036
crossref_primary_10_1016_j_smrv_2024_102027
crossref_primary_10_1111_jsr_14303
crossref_primary_10_1007_s10072_024_07342_w
crossref_primary_10_1007_s40675_024_00282_z
crossref_primary_10_1007_s40675_024_00283_y
crossref_primary_10_1016_j_sleep_2024_11_020
crossref_primary_10_1016_j_phymed_2023_155231
crossref_primary_10_1016_j_smrv_2024_101949
crossref_primary_10_1093_sleep_zsaf194
crossref_primary_10_3390_children11060658
crossref_primary_10_3390_jcm12165271
crossref_primary_10_1002_pcn5_213
crossref_primary_10_1111_ane_13702
crossref_primary_10_2147_NSS_S512951
crossref_primary_10_1016_j_nicl_2022_103024
crossref_primary_10_3390_biom15081184
crossref_primary_10_1093_sleep_zsaf112
crossref_primary_10_1371_journal_pone_0302829
crossref_primary_10_5472_marumj_1479815
crossref_primary_10_1016_j_numecd_2025_104014
crossref_primary_10_1002_brb3_3100
crossref_primary_10_2147_NSS_S532626
crossref_primary_10_1111_jsr_14311
crossref_primary_10_2147_NSS_S528340
crossref_primary_10_1016_j_jocn_2025_111369
crossref_primary_10_1093_sleep_zsaf084
crossref_primary_10_1016_j_smrv_2022_101735
crossref_primary_10_31083_j_jin2308144
crossref_primary_10_1007_s10072_022_06397_x
crossref_primary_10_1080_23279095_2022_2057857
crossref_primary_10_1093_sleep_zsae310
crossref_primary_10_1093_sleep_zsae113
crossref_primary_10_1016_j_sleep_2024_01_024
crossref_primary_10_1007_s00415_024_12356_7
crossref_primary_10_1016_j_neubiorev_2023_105126
Cites_doi 10.1212/01.wnl.0000223316.53428.c9
10.1177/1756286418759973
10.1002/ana.410410513
10.1016/bs.irn.2018.09.012
10.1093/gerona/glp161
10.1038/npp.2010.68
10.1002/mds.21608
10.1002/mds.23353
10.1089/caff.2019.0001
10.1016/j.sleep.2012.06.007
10.1016/j.neuron.2015.02.018
10.1016/j.sleep.2016.09.017
10.1007/s10827-005-5705-x
10.1111/j.1468-1331.2011.03604.x
10.1016/j.nicl.2014.11.010
10.1111/jsr.13298
10.1016/j.sleep.2014.03.010
10.1016/j.neuropsychologia.2014.07.015
10.1093/sleep/34.3.341
10.1111/ane.13055
10.5665/sleep.5966
10.1038/nn.2726
10.1016/j.sleep.2018.02.008
10.1002/1531-8257(199901)14:1<141::AID-MDS1024>3.0.CO;2-B
10.1016/j.clinimag.2014.07.010
10.3174/ajnr.A4999
10.1016/j.sleep.2018.06.004
10.1162/089976606775093909
10.1016/j.neuroimage.2011.02.046
10.1016/j.sleep.2016.10.010
10.1177/1073858418791763
10.1016/j.sleep.2019.11.1253
10.1212/01.wnl.0000325914.50764.a2
10.1016/bs.apha.2018.12.002
10.1111/ane.12582
10.1176/appi.neuropsych.12120394
10.1111/ejn.14335
10.3389/fpsyg.2021.729755
10.1212/WNL.54.2.502
10.1016/j.sleep.2016.07.018
10.1016/j.neuroimage.2004.10.021
10.1016/S1389-9457(02)00258-7
10.1016/S1389-9457(00)00065-4
10.1177/1756286420941670
10.1093/brain/awh441
10.1038/jcbfm.2011.201
10.1212/01.wnl.0000259036.89411.52
10.1016/j.sleep.2014.03.025
10.1093/brain/awp125
10.1155/2014/260896
10.1212/WNL.0b013e318294b3f6
10.1016/j.ijpsycho.2014.12.005
10.1038/nrn2762
10.1212/WNL.52.5.932
10.1097/00001756-200112210-00001
10.1016/j.clinph.2007.05.006
10.1016/j.sleep.2006.09.010
10.1016/j.sleep.2016.02.011
10.1007/s100720300004
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.sleep.2021.10.025
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1878-5506
EndPage 80
ExternalDocumentID 34740168
10_1016_j_sleep_2021_10_025
S138994572100530X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
6PF
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OJ-
OV.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSN
SSZ
T5K
UHS
UNMZH
UV1
Z5R
~G-
~HD
~S-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c411t-2f84ce576ffb20bd917fcc7f4b7d4db16b62428cc5c5117e141cc1f6e6c6942f3
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744282000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-9457
1878-5506
IngestDate Sun Nov 09 13:00:46 EST 2025
Wed Feb 19 02:27:17 EST 2025
Sat Nov 29 07:02:05 EST 2025
Tue Nov 18 21:41:12 EST 2025
Fri Feb 23 02:42:06 EST 2024
Tue Oct 14 19:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Restless legs syndrome
Volumetric analysis
Basal ganglia
Shape analysis
Magnetic resonance imaging
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c411t-2f84ce576ffb20bd917fcc7f4b7d4db16b62428cc5c5117e141cc1f6e6c6942f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5659-662X
0000-0001-6662-2281
0000-0002-5098-6379
0000-0003-3349-8426
0000-0001-6937-3065
PMID 34740168
PQID 2594293101
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2594293101
pubmed_primary_34740168
crossref_citationtrail_10_1016_j_sleep_2021_10_025
crossref_primary_10_1016_j_sleep_2021_10_025
elsevier_sciencedirect_doi_10_1016_j_sleep_2021_10_025
elsevier_clinicalkey_doi_10_1016_j_sleep_2021_10_025
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Sleep medicine
PublicationTitleAlternate Sleep Med
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Galbiati, Marelli, Giora (bib49) 2015; 95
Etgen, Draganski, Ilg (bib3) 2005; 24
Salimpoor, Benovoy, Larcher (bib51) 2011; 14
Ferri, Fulda, Allen (bib28) 2016; 26
Gruber, Dayan, Gutkin (bib61) 2006; 20
von Spiczak, Whone, Hammers (bib65) 2005; 128
Unrath, Juengling, Schork (bib4) 2007; 22
Tuo, Tian, Ma (bib40) 2019; 53
Diekelmann, Born (bib54) 2010; 11
Allen, Barker, Horska (bib32) 2013; 80
Lanza, Lanuzza, Arico (bib20) 2018; 46
Winkelmann, Prager, Lieb (bib47) 2005; 252
Earley, Kuwabara, Wong (bib13) 2011; 34
Lee, Ramsey, Spira (bib50) 2014; 26
Costa, Peppe, Mazzu (bib57) 2014; 2014
Peigneux, Laureys, Delbeuck (bib53) 2001; 12
Astrakas, Konitsiotis, Margariti (bib2) 2008; 71
Berridge, Kringelbach (bib52) 2015; 86
Wu, Xu, Lu (bib41) 2020; 70
Noureddini, Bagheri-Mohammadi (bib43) 2021; 10
Kocar, Muller, Kassubek (bib62) 2020; 13
Ferre, Garcia-Borreguero, Allen (bib22) 2019; 25
Celle, Roche, Peyron (bib5) 2010; 257
Trenkwalder, Zieglgansberger, Ahmedzai (bib33) 2017; 31
Andersson, Josefsson, Stiernman (bib63) 2021; 12
Blumenfeld (bib21) 2010
Connor, Wang, Allen (bib15) 2009; 132
Hornyak, Ahrendts, Spiegelhalder (bib6) 2007; 9
Allen, Picchietti, Garcia-Borreguero (bib23) 2014; 15
Trenkwalder, Walters, Hening (bib12) 1999; 14
Lanza, Cantone, Arico (bib19) 2018; 11
Lanza, Ferri (bib18) 2019; 84
O'Reilly, Frank (bib60) 2006; 18
Woo, Lee, Hwang (bib38) 2017; 135
Amann, Andelova, Pfister (bib67) 2015; 7
Oboshi, Ouchi, Yagi (bib14) 2012; 32
Walters, Paueksakon, Adler (bib37) 2021; 10
Aarts, Roelofs, Franke (bib59) 2010; 35
Vignatelli, Plazzi, Barbato (bib25) 2003; 23
Kim, Choi, Lee (bib44) 2014; 15
Fulda, Beitinger, Reppermund (bib45) 2010; 25
Goschke, Bolte (bib58) 2014; 62
Walters, LeBrocq, Dhar (bib24) 2003; 4
Vidal-Jordana, Pareto, Sastre-Garriga (bib68) 2017; 38
Celle, Roche, Kerleroux (bib46) 2010; 65
Ondo, Jankovic, Simpson (bib64) 2012; 13
Berry, Quan, Abreu (bib27) 2020
Rizzo, Li, Galantucci (bib31) 2017; 31
Siddiqui, Strus, Ming (bib36) 2007; 118
Picchietti, Winkelman (bib48) 2005; 28
Patenaude, Smith, Kennedy (bib29) 2011; 56
Tononi, Cirelli (bib56) 2020; 51
Ruppert, Bataillard, Namer (bib42) 2017; 30
Shiina, Suzuki, Okamura (bib39) 2019; 139
Rizzo, Manners, Vetrugno (bib8) 2012; 19
Turjanski, Lees, Brooks (bib10) 1999; 52
Clemens, Rye, Hochman (bib30) 2006; 67
Chang, Chang, Song (bib7) 2015; 39
Ferini-Strambi, Walters, Sica (bib34) 2014; 261
Bucher, Seelos, Oertel (bib1) 1997; 41
Rizzo, Plazzi (bib17) 2018; 143
Ruottinen, Partinen, Hublin (bib11) 2000; 54
Bastien, Vallieres, Morin (bib26) 2001; 2
Pennestri, Montplaisir, Colombo (bib35) 2007; 68
Lanza, DelRosso, Ferri (bib55) 2021
Ferri, Cosentino, Moussouttas (bib16) 2016; 39
Sheng, Zhao, Ma (bib9) 2021
Ferre (bib66) 2019; 9
Allen (10.1016/j.sleep.2021.10.025_bib23) 2014; 15
Tuo (10.1016/j.sleep.2021.10.025_bib40) 2019; 53
Gruber (10.1016/j.sleep.2021.10.025_bib61) 2006; 20
Rizzo (10.1016/j.sleep.2021.10.025_bib31) 2017; 31
Lee (10.1016/j.sleep.2021.10.025_bib50) 2014; 26
Vidal-Jordana (10.1016/j.sleep.2021.10.025_bib68) 2017; 38
Ruottinen (10.1016/j.sleep.2021.10.025_bib11) 2000; 54
Walters (10.1016/j.sleep.2021.10.025_bib37) 2021; 10
Lanza (10.1016/j.sleep.2021.10.025_bib55) 2021
Lanza (10.1016/j.sleep.2021.10.025_bib20) 2018; 46
Hornyak (10.1016/j.sleep.2021.10.025_bib6) 2007; 9
von Spiczak (10.1016/j.sleep.2021.10.025_bib65) 2005; 128
Celle (10.1016/j.sleep.2021.10.025_bib5) 2010; 257
Turjanski (10.1016/j.sleep.2021.10.025_bib10) 1999; 52
Aarts (10.1016/j.sleep.2021.10.025_bib59) 2010; 35
Wu (10.1016/j.sleep.2021.10.025_bib41) 2020; 70
Earley (10.1016/j.sleep.2021.10.025_bib13) 2011; 34
Trenkwalder (10.1016/j.sleep.2021.10.025_bib12) 1999; 14
Ferini-Strambi (10.1016/j.sleep.2021.10.025_bib34) 2014; 261
Peigneux (10.1016/j.sleep.2021.10.025_bib53) 2001; 12
Celle (10.1016/j.sleep.2021.10.025_bib46) 2010; 65
Kim (10.1016/j.sleep.2021.10.025_bib44) 2014; 15
Ondo (10.1016/j.sleep.2021.10.025_bib64) 2012; 13
Tononi (10.1016/j.sleep.2021.10.025_bib56) 2020; 51
Ruppert (10.1016/j.sleep.2021.10.025_bib42) 2017; 30
Lanza (10.1016/j.sleep.2021.10.025_bib18) 2019; 84
Chang (10.1016/j.sleep.2021.10.025_bib7) 2015; 39
Blumenfeld (10.1016/j.sleep.2021.10.025_bib21) 2010
Bucher (10.1016/j.sleep.2021.10.025_bib1) 1997; 41
Astrakas (10.1016/j.sleep.2021.10.025_bib2) 2008; 71
Rizzo (10.1016/j.sleep.2021.10.025_bib17) 2018; 143
Connor (10.1016/j.sleep.2021.10.025_bib15) 2009; 132
Trenkwalder (10.1016/j.sleep.2021.10.025_bib33) 2017; 31
Noureddini (10.1016/j.sleep.2021.10.025_bib43) 2021; 10
Rizzo (10.1016/j.sleep.2021.10.025_bib8) 2012; 19
Berry (10.1016/j.sleep.2021.10.025_bib27) 2020
Ferri (10.1016/j.sleep.2021.10.025_bib16) 2016; 39
Winkelmann (10.1016/j.sleep.2021.10.025_bib47) 2005; 252
Goschke (10.1016/j.sleep.2021.10.025_bib58) 2014; 62
Kocar (10.1016/j.sleep.2021.10.025_bib62) 2020; 13
Unrath (10.1016/j.sleep.2021.10.025_bib4) 2007; 22
Clemens (10.1016/j.sleep.2021.10.025_bib30) 2006; 67
Walters (10.1016/j.sleep.2021.10.025_bib24) 2003; 4
Patenaude (10.1016/j.sleep.2021.10.025_bib29) 2011; 56
Ferre (10.1016/j.sleep.2021.10.025_bib22) 2019; 25
Costa (10.1016/j.sleep.2021.10.025_bib57) 2014; 2014
Salimpoor (10.1016/j.sleep.2021.10.025_bib51) 2011; 14
Etgen (10.1016/j.sleep.2021.10.025_bib3) 2005; 24
Galbiati (10.1016/j.sleep.2021.10.025_bib49) 2015; 95
Berridge (10.1016/j.sleep.2021.10.025_bib52) 2015; 86
O'Reilly (10.1016/j.sleep.2021.10.025_bib60) 2006; 18
Sheng (10.1016/j.sleep.2021.10.025_bib9) 2021
Oboshi (10.1016/j.sleep.2021.10.025_bib14) 2012; 32
Siddiqui (10.1016/j.sleep.2021.10.025_bib36) 2007; 118
Bastien (10.1016/j.sleep.2021.10.025_bib26) 2001; 2
Shiina (10.1016/j.sleep.2021.10.025_bib39) 2019; 139
Andersson (10.1016/j.sleep.2021.10.025_bib63) 2021; 12
Picchietti (10.1016/j.sleep.2021.10.025_bib48) 2005; 28
Vignatelli (10.1016/j.sleep.2021.10.025_bib25) 2003; 23
Ferre (10.1016/j.sleep.2021.10.025_bib66) 2019; 9
Woo (10.1016/j.sleep.2021.10.025_bib38) 2017; 135
Pennestri (10.1016/j.sleep.2021.10.025_bib35) 2007; 68
Fulda (10.1016/j.sleep.2021.10.025_bib45) 2010; 25
Lanza (10.1016/j.sleep.2021.10.025_bib19) 2018; 11
Diekelmann (10.1016/j.sleep.2021.10.025_bib54) 2010; 11
Allen (10.1016/j.sleep.2021.10.025_bib32) 2013; 80
Amann (10.1016/j.sleep.2021.10.025_bib67) 2015; 7
Ferri (10.1016/j.sleep.2021.10.025_bib28) 2016; 26
References_xml – volume: 68
  start-page: 1213
  year: 2007
  end-page: 1218
  ident: bib35
  article-title: Nocturnal blood pressure changes in patients with restless legs syndrome
  publication-title: Neurology
– volume: 95
  start-page: 304
  year: 2015
  end-page: 309
  ident: bib49
  article-title: Neurocognitive function in patients with idiopathic Restless Legs Syndrome before and after treatment with dopamine-agonist
  publication-title: Int J Psychophysiol : Off J Int Org Psychophysiol
– volume: 32
  start-page: 654
  year: 2012
  end-page: 662
  ident: bib14
  article-title: In vivo mesolimbic D2/3 receptor binding predicts posttherapeutic clinical responses in restless legs syndrome: a positron emission tomography study
  publication-title: J Cerebr Blood Flow Metabol : Off J Int Soc Cerebr Blood Flow Metabol
– volume: 84
  start-page: 101
  year: 2019
  end-page: 119
  ident: bib18
  article-title: The neurophysiology of hyperarousal in restless legs syndrome: hints for a role of glutamate/GABA
  publication-title: Adv Pharmacol
– volume: 51
  start-page: 413
  year: 2020
  end-page: 421
  ident: bib56
  article-title: Sleep and synaptic down-selection
  publication-title: Eur J Neurosci
– volume: 26
  start-page: 87
  year: 2014
  end-page: 91
  ident: bib50
  article-title: Comparison of cognitive functioning among individuals with treated restless legs syndrome (RLS), untreated RLS, and no RLS
  publication-title: J Neuropsychiatry Clin Neurosci
– volume: 12
  start-page: A111
  year: 2001
  end-page: A124
  ident: bib53
  article-title: Sleeping brain, learning brain. The role of sleep for memory systems
  publication-title: Neuroreport
– year: 2021
  ident: bib55
  article-title: Sleep and homeostatic control of plasticity
  publication-title: Handbook of clinical neurology - neuroplasticity
– volume: 4
  start-page: 121
  year: 2003
  end-page: 132
  ident: bib24
  article-title: Validation of the international restless legs syndrome study group rating scale for restless legs syndrome
  publication-title: Sleep Med
– volume: 18
  start-page: 283
  year: 2006
  end-page: 328
  ident: bib60
  article-title: Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia
  publication-title: Neural Comput
– volume: 46
  start-page: 1
  year: 2018
  end-page: 4
  ident: bib20
  article-title: Impaired short-term plasticity in restless legs syndrome: a pilot rTMS study
  publication-title: Sleep Med
– volume: 2014
  start-page: 260896
  year: 2014
  ident: bib57
  article-title: Dopamine treatment and cognitive functioning in individuals with Parkinson's disease: the "cognitive flexibility" hypothesis seems to work
  publication-title: Behav Neurol
– volume: 31
  start-page: 39
  year: 2017
  end-page: 48
  ident: bib31
  article-title: Brain imaging and networks in restless legs syndrome
  publication-title: Sleep Med
– volume: 7
  start-page: 43
  year: 2015
  end-page: 52
  ident: bib67
  article-title: Subcortical brain segmentation of two dimensional T1-weighted data sets with FMRIB's Integrated Registration and Segmentation Tool (FIRST)
  publication-title: Neuroimage Clin
– volume: 252
  start-page: 67
  year: 2005
  end-page: 71
  ident: bib47
  article-title: Anxietas tibiarum". Depression and anxiety disorders in patients with restless legs syndrome
  publication-title: J Neurol
– volume: 70
  start-page: 66
  year: 2020
  end-page: 70
  ident: bib41
  article-title: Acute post-stroke restless legs syndrome: the body of caudate nucleus considerations
  publication-title: Sleep Med
– volume: 20
  start-page: 153
  year: 2006
  end-page: 166
  ident: bib61
  article-title: Dopamine modulation in the basal ganglia locks the gate to working memory
  publication-title: J Comput Neurosci
– volume: 257
  start-page: 344
  year: 2010
  end-page: 348
  ident: bib5
  article-title: Lack of specific gray matter alterations in restless legs syndrome in elderly subjects
  publication-title: J Neurol
– volume: 143
  start-page: 31
  year: 2018
  end-page: 64
  ident: bib17
  article-title: Neuroimaging applications in restless legs syndrome
  publication-title: Int Rev Neurobiol
– volume: 54
  start-page: 502
  year: 2000
  end-page: 504
  ident: bib11
  article-title: An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome
  publication-title: Neurology
– year: 2020
  ident: bib27
  article-title: The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, ver. 2.6
– volume: 14
  start-page: 257
  year: 2011
  end-page: 262
  ident: bib51
  article-title: Anatomically distinct dopamine release during anticipation and experience of peak emotion to music
  publication-title: Nat Neurosci
– volume: 2
  start-page: 297
  year: 2001
  end-page: 307
  ident: bib26
  article-title: Validation of the Insomnia Severity Index as an outcome measure for insomnia research
  publication-title: Sleep Med
– volume: 30
  start-page: 136
  year: 2017
  end-page: 138
  ident: bib42
  article-title: Hyperdopaminergism in lenticulostriate stroke-related restless legs syndrome: an imaging study
  publication-title: Sleep Med
– volume: 25
  start-page: 2641
  year: 2010
  end-page: 2648
  ident: bib45
  article-title: Short-term attention and verbal fluency is decreased in restless legs syndrome patients
  publication-title: Mov Disord : Off J Mov Disord Soc
– volume: 11
  start-page: 114
  year: 2010
  end-page: 126
  ident: bib54
  article-title: The memory function of sleep
  publication-title: Nat Rev Neurosci
– volume: 86
  start-page: 646
  year: 2015
  end-page: 664
  ident: bib52
  article-title: Pleasure systems in the brain
  publication-title: Neuron
– volume: 62
  start-page: 403
  year: 2014
  end-page: 423
  ident: bib58
  article-title: Emotional modulation of control dilemmas: the role of positive affect, reward, and dopamine in cognitive stability and flexibility
  publication-title: Neuropsychologia
– volume: 12
  start-page: 729755
  year: 2021
  ident: bib63
  article-title: Cognitive decline in Parkinson's disease: a subgroup of extreme decliners revealed by a data-driven analysis of longitudinal progression
  publication-title: Front Psychol
– volume: 139
  start-page: 260
  year: 2019
  end-page: 268
  ident: bib39
  article-title: Restless legs syndrome and its variants in acute ischemic stroke
  publication-title: Acta Neurol Scand
– volume: 52
  start-page: 932
  year: 1999
  end-page: 937
  ident: bib10
  article-title: Striatal dopaminergic function in restless legs syndrome: 18F-dopa and 11C-raclopride PET studies
  publication-title: Neurology
– volume: 11
  year: 2018
  ident: bib19
  article-title: Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory-motor network in patients with restless legs syndrome
  publication-title: Therapeut Adv Neurol Disord
– volume: 13
  year: 2020
  ident: bib62
  article-title: Differential functional connectivity in thalamic and dopaminergic pathways in restless legs syndrome: a meta-analysis
  publication-title: Therapeut Adv Neurol Disord
– volume: 38
  start-page: 250
  year: 2017
  end-page: 256
  ident: bib68
  article-title: Measurement of cortical thickness and volume of subcortical structures in multiple sclerosis: agreement between 2D spin-echo and 3D MPRAGE T1-weighted images
  publication-title: AJNR (Am J Neuroradiol)
– volume: 22
  start-page: 1751
  year: 2007
  end-page: 1756
  ident: bib4
  article-title: Cortical grey matter alterations in idiopathic restless legs syndrome: an optimized voxel-based morphometry study
  publication-title: Mov Disord
– volume: 135
  start-page: 204
  year: 2017
  end-page: 210
  ident: bib38
  article-title: Post-stroke restless leg syndrome and periodic limb movements in sleep
  publication-title: Acta Neurol Scand
– volume: 39
  start-page: 20
  year: 2015
  end-page: 25
  ident: bib7
  article-title: Gray matter alteration in patients with restless legs syndrome: a voxel-based morphometry study
  publication-title: Clin Imag
– volume: 41
  start-page: 639
  year: 1997
  end-page: 645
  ident: bib1
  article-title: Cerebral generators involved in the pathogenesis of the restless legs syndrome
  publication-title: Ann Neurol
– volume: 13
  start-page: 1202
  year: 2012
  end-page: 1204
  ident: bib64
  article-title: Globus pallidus deep brain stimulation for refractory idiopathic restless legs syndrome
  publication-title: Sleep Med
– volume: 28
  start-page: 891
  year: 2005
  end-page: 898
  ident: bib48
  article-title: Restless legs syndrome, periodic limb movements in sleep, and depression
  publication-title: Sleep
– volume: 132
  start-page: 2403
  year: 2009
  end-page: 2412
  ident: bib15
  article-title: Altered dopaminergic profile in the putamen and substantia nigra in restless leg syndrome
  publication-title: Brain
– volume: 9
  start-page: 22
  year: 2007
  end-page: 26
  ident: bib6
  article-title: Voxel-based morphometry in unmedicated patients with restless legs syndrome
  publication-title: Sleep Med
– year: 2010
  ident: bib21
  article-title: Neuroanatomy through clinical cases
– volume: 10
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib43
  article-title: Adult hippocampal neurogenesis and alzheimer's disease: novel application of mesenchymal stem cells and their role in hippocampal neurogenesis
  publication-title: Int J Mol Cell Med
– volume: 261
  start-page: 1051
  year: 2014
  end-page: 1068
  ident: bib34
  article-title: The relationship among restless legs syndrome (Willis-Ekbom Disease), hypertension, cardiovascular disease, and cerebrovascular disease
  publication-title: J Neurol
– volume: 10
  year: 2021
  ident: bib37
  article-title: Restless legs syndrome shows increased silent postmortem cerebral microvascular disease with gliosis
  publication-title: J Am Heart Assoc
– volume: 26
  start-page: 86
  year: 2016
  end-page: 95
  ident: bib28
  article-title: World Association of Sleep Medicine (WASM) 2016 standards for recording and scoring leg movements in polysomnograms developed by a joint task force from the International and the European Restless Legs Syndrome Study Groups (IRLSSG and EURLSSG)
  publication-title: Sleep Med
– volume: 65
  start-page: 167
  year: 2010
  end-page: 173
  ident: bib46
  article-title: Prevalence and clinical correlates of restless legs syndrome in an elderly French population: the synapse study
  publication-title: J Gerontol A, Biol Sci Med Sci
– volume: 118
  start-page: 1923
  year: 2007
  end-page: 1930
  ident: bib36
  article-title: Rise of blood pressure with periodic limb movements in sleep and wakefulness
  publication-title: Clin Neurophysiol : Off J Int Fed Clin Neurophysiol
– volume: 15
  start-page: 808
  year: 2014
  end-page: 815
  ident: bib44
  article-title: Working memory deficit in patients with restless legs syndrome: an event-related potential study
  publication-title: Sleep Med
– volume: 71
  start-page: 911
  year: 2008
  end-page: 916
  ident: bib2
  article-title: T2 relaxometry and fMRI of the brain in late-onset restless legs syndrome
  publication-title: Neurology
– volume: 14
  start-page: 141
  year: 1999
  end-page: 145
  ident: bib12
  article-title: Positron emission tomographic studies in restless legs syndrome
  publication-title: Mov Disord
– volume: 128
  start-page: 906
  year: 2005
  end-page: 917
  ident: bib65
  article-title: The role of opioids in restless legs syndrome: an [11C]diprenorphine PET study
  publication-title: Brain
– volume: 80
  start-page: 2028
  year: 2013
  end-page: 2034
  ident: bib32
  article-title: Thalamic glutamate/glutamine in restless legs syndrome: increased and related to disturbed sleep
  publication-title: Neurology
– volume: 23
  start-page: 295
  year: 2003
  end-page: 300
  ident: bib25
  article-title: Italian version of the Epworth sleepiness scale: external validity
  publication-title: Neurol Sci : Off J Ital Neurol Soc Ital Soc Clin Neurophysiol
– volume: 39
  start-page: 1371
  year: 2016
  end-page: 1377
  ident: bib16
  article-title: Silent cerebral small vessel disease in restless legs syndrome
  publication-title: Sleep
– volume: 67
  start-page: 125
  year: 2006
  end-page: 130
  ident: bib30
  article-title: Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective
  publication-title: Neurology
– volume: 15
  start-page: 860
  year: 2014
  end-page: 873
  ident: bib23
  article-title: Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria--history, rationale, description, and significance
  publication-title: Sleep Med
– volume: 9
  start-page: 1
  year: 2019
  end-page: 3
  ident: bib66
  article-title: The adenosine hypothesis of restless legs syndrome
  publication-title: J Caffeine Adenosine Res
– volume: 35
  start-page: 1943
  year: 2010
  end-page: 1951
  ident: bib59
  article-title: Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging
  publication-title: Neuropsychopharmacology : Off Publ Am Coll Neuropsychopharmacol
– volume: 56
  start-page: 907
  year: 2011
  end-page: 922
  ident: bib29
  article-title: A Bayesian model of shape and appearance for subcortical brain segmentation
  publication-title: Neuroimage
– volume: 24
  start-page: 1242
  year: 2005
  end-page: 1247
  ident: bib3
  article-title: Bilateral thalamic gray matter changes in patients with restless legs syndrome
  publication-title: Neuroimage
– volume: 19
  start-page: 1045
  year: 2012
  end-page: 1049
  ident: bib8
  article-title: Combined brain voxel-based morphometry and diffusion tensor imaging study in idiopathic restless legs syndrome patients
  publication-title: Eur J Neurol
– volume: 31
  start-page: 78
  year: 2017
  end-page: 85
  ident: bib33
  article-title: Pain, opioids, and sleep: implications for restless legs syndrome treatment
  publication-title: Sleep Med
– year: 2021
  ident: bib9
  article-title: Grey matter alterations in restless legs syndrome: a coordinate-based meta-analysis
  publication-title: J Sleep Res
– volume: 25
  start-page: 113
  year: 2019
  end-page: 125
  ident: bib22
  article-title: New insights into the neurobiology of restless legs syndrome
  publication-title: Neuroscientist : Rev J Bringing Neurobiol Neurol Psychiatr
– volume: 53
  start-page: 81
  year: 2019
  end-page: 87
  ident: bib40
  article-title: Clinical and radiological characteristics of restless legs syndrome following acute lacunar infarction
  publication-title: Sleep Med
– volume: 34
  start-page: 341
  year: 2011
  end-page: 347
  ident: bib13
  article-title: The dopamine transporter is decreased in the striatum of subjects with restless legs syndrome
  publication-title: Sleep
– volume: 67
  start-page: 125
  year: 2006
  ident: 10.1016/j.sleep.2021.10.025_bib30
  article-title: Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000223316.53428.c9
– volume: 11
  year: 2018
  ident: 10.1016/j.sleep.2021.10.025_bib19
  article-title: Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory-motor network in patients with restless legs syndrome
  publication-title: Therapeut Adv Neurol Disord
  doi: 10.1177/1756286418759973
– year: 2010
  ident: 10.1016/j.sleep.2021.10.025_bib21
– volume: 10
  year: 2021
  ident: 10.1016/j.sleep.2021.10.025_bib37
  article-title: Restless legs syndrome shows increased silent postmortem cerebral microvascular disease with gliosis
  publication-title: J Am Heart Assoc
– volume: 41
  start-page: 639
  year: 1997
  ident: 10.1016/j.sleep.2021.10.025_bib1
  article-title: Cerebral generators involved in the pathogenesis of the restless legs syndrome
  publication-title: Ann Neurol
  doi: 10.1002/ana.410410513
– volume: 143
  start-page: 31
  year: 2018
  ident: 10.1016/j.sleep.2021.10.025_bib17
  article-title: Neuroimaging applications in restless legs syndrome
  publication-title: Int Rev Neurobiol
  doi: 10.1016/bs.irn.2018.09.012
– volume: 65
  start-page: 167
  year: 2010
  ident: 10.1016/j.sleep.2021.10.025_bib46
  article-title: Prevalence and clinical correlates of restless legs syndrome in an elderly French population: the synapse study
  publication-title: J Gerontol A, Biol Sci Med Sci
  doi: 10.1093/gerona/glp161
– volume: 35
  start-page: 1943
  year: 2010
  ident: 10.1016/j.sleep.2021.10.025_bib59
  article-title: Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging
  publication-title: Neuropsychopharmacology : Off Publ Am Coll Neuropsychopharmacol
  doi: 10.1038/npp.2010.68
– volume: 22
  start-page: 1751
  year: 2007
  ident: 10.1016/j.sleep.2021.10.025_bib4
  article-title: Cortical grey matter alterations in idiopathic restless legs syndrome: an optimized voxel-based morphometry study
  publication-title: Mov Disord
  doi: 10.1002/mds.21608
– volume: 25
  start-page: 2641
  year: 2010
  ident: 10.1016/j.sleep.2021.10.025_bib45
  article-title: Short-term attention and verbal fluency is decreased in restless legs syndrome patients
  publication-title: Mov Disord : Off J Mov Disord Soc
  doi: 10.1002/mds.23353
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.sleep.2021.10.025_bib66
  article-title: The adenosine hypothesis of restless legs syndrome
  publication-title: J Caffeine Adenosine Res
  doi: 10.1089/caff.2019.0001
– volume: 13
  start-page: 1202
  year: 2012
  ident: 10.1016/j.sleep.2021.10.025_bib64
  article-title: Globus pallidus deep brain stimulation for refractory idiopathic restless legs syndrome
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2012.06.007
– volume: 28
  start-page: 891
  year: 2005
  ident: 10.1016/j.sleep.2021.10.025_bib48
  article-title: Restless legs syndrome, periodic limb movements in sleep, and depression
  publication-title: Sleep
– volume: 86
  start-page: 646
  year: 2015
  ident: 10.1016/j.sleep.2021.10.025_bib52
  article-title: Pleasure systems in the brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.02.018
– volume: 31
  start-page: 78
  year: 2017
  ident: 10.1016/j.sleep.2021.10.025_bib33
  article-title: Pain, opioids, and sleep: implications for restless legs syndrome treatment
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2016.09.017
– volume: 20
  start-page: 153
  year: 2006
  ident: 10.1016/j.sleep.2021.10.025_bib61
  article-title: Dopamine modulation in the basal ganglia locks the gate to working memory
  publication-title: J Comput Neurosci
  doi: 10.1007/s10827-005-5705-x
– volume: 19
  start-page: 1045
  year: 2012
  ident: 10.1016/j.sleep.2021.10.025_bib8
  article-title: Combined brain voxel-based morphometry and diffusion tensor imaging study in idiopathic restless legs syndrome patients
  publication-title: Eur J Neurol
  doi: 10.1111/j.1468-1331.2011.03604.x
– year: 2021
  ident: 10.1016/j.sleep.2021.10.025_bib55
  article-title: Sleep and homeostatic control of plasticity
– volume: 261
  start-page: 1051
  year: 2014
  ident: 10.1016/j.sleep.2021.10.025_bib34
  article-title: The relationship among restless legs syndrome (Willis-Ekbom Disease), hypertension, cardiovascular disease, and cerebrovascular disease
  publication-title: J Neurol
– volume: 7
  start-page: 43
  year: 2015
  ident: 10.1016/j.sleep.2021.10.025_bib67
  article-title: Subcortical brain segmentation of two dimensional T1-weighted data sets with FMRIB's Integrated Registration and Segmentation Tool (FIRST)
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.11.010
– year: 2021
  ident: 10.1016/j.sleep.2021.10.025_bib9
  article-title: Grey matter alterations in restless legs syndrome: a coordinate-based meta-analysis
  publication-title: J Sleep Res
  doi: 10.1111/jsr.13298
– volume: 15
  start-page: 808
  year: 2014
  ident: 10.1016/j.sleep.2021.10.025_bib44
  article-title: Working memory deficit in patients with restless legs syndrome: an event-related potential study
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2014.03.010
– volume: 62
  start-page: 403
  year: 2014
  ident: 10.1016/j.sleep.2021.10.025_bib58
  article-title: Emotional modulation of control dilemmas: the role of positive affect, reward, and dopamine in cognitive stability and flexibility
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2014.07.015
– volume: 34
  start-page: 341
  year: 2011
  ident: 10.1016/j.sleep.2021.10.025_bib13
  article-title: The dopamine transporter is decreased in the striatum of subjects with restless legs syndrome
  publication-title: Sleep
  doi: 10.1093/sleep/34.3.341
– volume: 257
  start-page: 344
  year: 2010
  ident: 10.1016/j.sleep.2021.10.025_bib5
  article-title: Lack of specific gray matter alterations in restless legs syndrome in elderly subjects
  publication-title: J Neurol
– volume: 139
  start-page: 260
  year: 2019
  ident: 10.1016/j.sleep.2021.10.025_bib39
  article-title: Restless legs syndrome and its variants in acute ischemic stroke
  publication-title: Acta Neurol Scand
  doi: 10.1111/ane.13055
– volume: 39
  start-page: 1371
  year: 2016
  ident: 10.1016/j.sleep.2021.10.025_bib16
  article-title: Silent cerebral small vessel disease in restless legs syndrome
  publication-title: Sleep
  doi: 10.5665/sleep.5966
– volume: 14
  start-page: 257
  year: 2011
  ident: 10.1016/j.sleep.2021.10.025_bib51
  article-title: Anatomically distinct dopamine release during anticipation and experience of peak emotion to music
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2726
– volume: 46
  start-page: 1
  year: 2018
  ident: 10.1016/j.sleep.2021.10.025_bib20
  article-title: Impaired short-term plasticity in restless legs syndrome: a pilot rTMS study
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2018.02.008
– volume: 14
  start-page: 141
  year: 1999
  ident: 10.1016/j.sleep.2021.10.025_bib12
  article-title: Positron emission tomographic studies in restless legs syndrome
  publication-title: Mov Disord
  doi: 10.1002/1531-8257(199901)14:1<141::AID-MDS1024>3.0.CO;2-B
– volume: 39
  start-page: 20
  year: 2015
  ident: 10.1016/j.sleep.2021.10.025_bib7
  article-title: Gray matter alteration in patients with restless legs syndrome: a voxel-based morphometry study
  publication-title: Clin Imag
  doi: 10.1016/j.clinimag.2014.07.010
– volume: 38
  start-page: 250
  year: 2017
  ident: 10.1016/j.sleep.2021.10.025_bib68
  article-title: Measurement of cortical thickness and volume of subcortical structures in multiple sclerosis: agreement between 2D spin-echo and 3D MPRAGE T1-weighted images
  publication-title: AJNR (Am J Neuroradiol)
  doi: 10.3174/ajnr.A4999
– volume: 53
  start-page: 81
  year: 2019
  ident: 10.1016/j.sleep.2021.10.025_bib40
  article-title: Clinical and radiological characteristics of restless legs syndrome following acute lacunar infarction
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2018.06.004
– volume: 18
  start-page: 283
  year: 2006
  ident: 10.1016/j.sleep.2021.10.025_bib60
  article-title: Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia
  publication-title: Neural Comput
  doi: 10.1162/089976606775093909
– volume: 56
  start-page: 907
  year: 2011
  ident: 10.1016/j.sleep.2021.10.025_bib29
  article-title: A Bayesian model of shape and appearance for subcortical brain segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.046
– volume: 26
  start-page: 86
  year: 2016
  ident: 10.1016/j.sleep.2021.10.025_bib28
  article-title: World Association of Sleep Medicine (WASM) 2016 standards for recording and scoring leg movements in polysomnograms developed by a joint task force from the International and the European Restless Legs Syndrome Study Groups (IRLSSG and EURLSSG)
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2016.10.010
– volume: 25
  start-page: 113
  year: 2019
  ident: 10.1016/j.sleep.2021.10.025_bib22
  article-title: New insights into the neurobiology of restless legs syndrome
  publication-title: Neuroscientist : Rev J Bringing Neurobiol Neurol Psychiatr
  doi: 10.1177/1073858418791763
– volume: 70
  start-page: 66
  year: 2020
  ident: 10.1016/j.sleep.2021.10.025_bib41
  article-title: Acute post-stroke restless legs syndrome: the body of caudate nucleus considerations
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2019.11.1253
– volume: 71
  start-page: 911
  year: 2008
  ident: 10.1016/j.sleep.2021.10.025_bib2
  article-title: T2 relaxometry and fMRI of the brain in late-onset restless legs syndrome
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000325914.50764.a2
– volume: 84
  start-page: 101
  year: 2019
  ident: 10.1016/j.sleep.2021.10.025_bib18
  article-title: The neurophysiology of hyperarousal in restless legs syndrome: hints for a role of glutamate/GABA
  publication-title: Adv Pharmacol
  doi: 10.1016/bs.apha.2018.12.002
– volume: 135
  start-page: 204
  year: 2017
  ident: 10.1016/j.sleep.2021.10.025_bib38
  article-title: Post-stroke restless leg syndrome and periodic limb movements in sleep
  publication-title: Acta Neurol Scand
  doi: 10.1111/ane.12582
– volume: 26
  start-page: 87
  year: 2014
  ident: 10.1016/j.sleep.2021.10.025_bib50
  article-title: Comparison of cognitive functioning among individuals with treated restless legs syndrome (RLS), untreated RLS, and no RLS
  publication-title: J Neuropsychiatry Clin Neurosci
  doi: 10.1176/appi.neuropsych.12120394
– volume: 51
  start-page: 413
  year: 2020
  ident: 10.1016/j.sleep.2021.10.025_bib56
  article-title: Sleep and synaptic down-selection
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.14335
– volume: 12
  start-page: 729755
  year: 2021
  ident: 10.1016/j.sleep.2021.10.025_bib63
  article-title: Cognitive decline in Parkinson's disease: a subgroup of extreme decliners revealed by a data-driven analysis of longitudinal progression
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2021.729755
– year: 2020
  ident: 10.1016/j.sleep.2021.10.025_bib27
– volume: 54
  start-page: 502
  year: 2000
  ident: 10.1016/j.sleep.2021.10.025_bib11
  article-title: An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome
  publication-title: Neurology
  doi: 10.1212/WNL.54.2.502
– volume: 252
  start-page: 67
  year: 2005
  ident: 10.1016/j.sleep.2021.10.025_bib47
  article-title: Anxietas tibiarum". Depression and anxiety disorders in patients with restless legs syndrome
  publication-title: J Neurol
– volume: 31
  start-page: 39
  year: 2017
  ident: 10.1016/j.sleep.2021.10.025_bib31
  article-title: Brain imaging and networks in restless legs syndrome
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2016.07.018
– volume: 24
  start-page: 1242
  year: 2005
  ident: 10.1016/j.sleep.2021.10.025_bib3
  article-title: Bilateral thalamic gray matter changes in patients with restless legs syndrome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.10.021
– volume: 4
  start-page: 121
  year: 2003
  ident: 10.1016/j.sleep.2021.10.025_bib24
  article-title: Validation of the international restless legs syndrome study group rating scale for restless legs syndrome
  publication-title: Sleep Med
  doi: 10.1016/S1389-9457(02)00258-7
– volume: 2
  start-page: 297
  year: 2001
  ident: 10.1016/j.sleep.2021.10.025_bib26
  article-title: Validation of the Insomnia Severity Index as an outcome measure for insomnia research
  publication-title: Sleep Med
  doi: 10.1016/S1389-9457(00)00065-4
– volume: 13
  year: 2020
  ident: 10.1016/j.sleep.2021.10.025_bib62
  article-title: Differential functional connectivity in thalamic and dopaminergic pathways in restless legs syndrome: a meta-analysis
  publication-title: Therapeut Adv Neurol Disord
  doi: 10.1177/1756286420941670
– volume: 128
  start-page: 906
  year: 2005
  ident: 10.1016/j.sleep.2021.10.025_bib65
  article-title: The role of opioids in restless legs syndrome: an [11C]diprenorphine PET study
  publication-title: Brain
  doi: 10.1093/brain/awh441
– volume: 32
  start-page: 654
  year: 2012
  ident: 10.1016/j.sleep.2021.10.025_bib14
  article-title: In vivo mesolimbic D2/3 receptor binding predicts posttherapeutic clinical responses in restless legs syndrome: a positron emission tomography study
  publication-title: J Cerebr Blood Flow Metabol : Off J Int Soc Cerebr Blood Flow Metabol
  doi: 10.1038/jcbfm.2011.201
– volume: 68
  start-page: 1213
  year: 2007
  ident: 10.1016/j.sleep.2021.10.025_bib35
  article-title: Nocturnal blood pressure changes in patients with restless legs syndrome
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000259036.89411.52
– volume: 15
  start-page: 860
  year: 2014
  ident: 10.1016/j.sleep.2021.10.025_bib23
  article-title: Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria--history, rationale, description, and significance
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2014.03.025
– volume: 132
  start-page: 2403
  year: 2009
  ident: 10.1016/j.sleep.2021.10.025_bib15
  article-title: Altered dopaminergic profile in the putamen and substantia nigra in restless leg syndrome
  publication-title: Brain
  doi: 10.1093/brain/awp125
– volume: 2014
  start-page: 260896
  year: 2014
  ident: 10.1016/j.sleep.2021.10.025_bib57
  article-title: Dopamine treatment and cognitive functioning in individuals with Parkinson's disease: the "cognitive flexibility" hypothesis seems to work
  publication-title: Behav Neurol
  doi: 10.1155/2014/260896
– volume: 80
  start-page: 2028
  year: 2013
  ident: 10.1016/j.sleep.2021.10.025_bib32
  article-title: Thalamic glutamate/glutamine in restless legs syndrome: increased and related to disturbed sleep
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318294b3f6
– volume: 95
  start-page: 304
  year: 2015
  ident: 10.1016/j.sleep.2021.10.025_bib49
  article-title: Neurocognitive function in patients with idiopathic Restless Legs Syndrome before and after treatment with dopamine-agonist
  publication-title: Int J Psychophysiol : Off J Int Org Psychophysiol
  doi: 10.1016/j.ijpsycho.2014.12.005
– volume: 11
  start-page: 114
  year: 2010
  ident: 10.1016/j.sleep.2021.10.025_bib54
  article-title: The memory function of sleep
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2762
– volume: 52
  start-page: 932
  year: 1999
  ident: 10.1016/j.sleep.2021.10.025_bib10
  article-title: Striatal dopaminergic function in restless legs syndrome: 18F-dopa and 11C-raclopride PET studies
  publication-title: Neurology
  doi: 10.1212/WNL.52.5.932
– volume: 12
  start-page: A111
  year: 2001
  ident: 10.1016/j.sleep.2021.10.025_bib53
  article-title: Sleeping brain, learning brain. The role of sleep for memory systems
  publication-title: Neuroreport
  doi: 10.1097/00001756-200112210-00001
– volume: 118
  start-page: 1923
  year: 2007
  ident: 10.1016/j.sleep.2021.10.025_bib36
  article-title: Rise of blood pressure with periodic limb movements in sleep and wakefulness
  publication-title: Clin Neurophysiol : Off J Int Fed Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.05.006
– volume: 9
  start-page: 22
  year: 2007
  ident: 10.1016/j.sleep.2021.10.025_bib6
  article-title: Voxel-based morphometry in unmedicated patients with restless legs syndrome
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2006.09.010
– volume: 30
  start-page: 136
  year: 2017
  ident: 10.1016/j.sleep.2021.10.025_bib42
  article-title: Hyperdopaminergism in lenticulostriate stroke-related restless legs syndrome: an imaging study
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2016.02.011
– volume: 10
  start-page: 1
  year: 2021
  ident: 10.1016/j.sleep.2021.10.025_bib43
  article-title: Adult hippocampal neurogenesis and alzheimer's disease: novel application of mesenchymal stem cells and their role in hippocampal neurogenesis
  publication-title: Int J Mol Cell Med
– volume: 23
  start-page: 295
  year: 2003
  ident: 10.1016/j.sleep.2021.10.025_bib25
  article-title: Italian version of the Epworth sleepiness scale: external validity
  publication-title: Neurol Sci : Off J Ital Neurol Soc Ital Soc Clin Neurophysiol
  doi: 10.1007/s100720300004
SSID ssj0017184
Score 2.5249002
Snippet Although several studies have shown the involvement of specific structures of the central nervous system, the dopaminergic system, and iron metabolism in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 74
SubjectTerms Basal ganglia
Brain - diagnostic imaging
Female
Humans
Magnetic Resonance Imaging
Male
Putamen
Restless legs syndrome
Restless Legs Syndrome - diagnostic imaging
Retrospective Studies
Shape analysis
Volumetric analysis
Title Morphological analysis of the brain subcortical gray structures in restless legs syndrome
URI https://www.clinicalkey.com/#!/content/1-s2.0-S138994572100530X
https://dx.doi.org/10.1016/j.sleep.2021.10.025
https://www.ncbi.nlm.nih.gov/pubmed/34740168
https://www.proquest.com/docview/2594293101
Volume 88
WOSCitedRecordID wos000744282000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017184
  issn: 1389-9457
  databaseCode: AIEXJ
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6jQMXBOKrAyYjIS4l1Zy4iXOcoBOgtiDopHKKHMeuOkVJadpq7M7_zXNsp526jXHgElVOXz7e--X5Pft9IPSG-QrOsMATFFQg5WHPi7NYelwSSXgQyixVdbOJaDRik0n8tdX67XJh1nlUFOziIp7_V1HDGAhbp87-g7ibi8IA_AahwxHEDsc7CX5YAusalca3io5oGzPVLSE61SoFr9MsY08X_FfHlJFdLerwrI7u15FrFZjLaXVtUYPvuZTznY35YTnlwK_SJgHN-CZ7bCgvL_lcVmZ7SZd9AAhuNTPm6zoRqqHUrY1ncrlsZo0PMv8GE3p97UGpky8qS27XLHyyFf9h1CwD3xV8I1sE-5oxq5tNyz-rXE07nx2db5YfzruVfvOuvl1Xx-uZfOqrFbZHX5LTs8EgGfcn47fzn55uPqY36W0nlj104Ee9GPT7wcmn_uRzsx0FE3gdnuAe0ZWvqgMFd-57k4lzkwtTmzLjh-iB9UHwicHOI9SSxWP04wpusMMNLhUG3OAaN3gLN1jjBm9wg-G0ww3WuMEON0_Q2Wl__P6jZ_tu6A-WLD1fMSokOKJKpf5xmoFHr4SIFE2jjGYpCVOdVMSE6Akw1yNJKBGCqFCGIoypr4KnaL8oC_kcYZLCnEBJqthxRrkQjMsgy-LaEQl6SrWR71iVCFuUXvdGyRMXfXie1PxNNH_1IPC3jd41RHNTk-X2v1Mng8SlG8MEmQB-bicLGzJrjRor8--Er52gE9DVegOOF7JcVYnfA_bE4FCRNnpmENC8QEB1b8yQHd6B-gW6v_mqXqJ9ELV8he6J9XJWLY7QXjRhRxbCfwAGScWZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphological+analysis+of+the+brain+subcortical+gray+structures+in+restless+legs+syndrome&rft.jtitle=Sleep+medicine&rft.au=Mogavero%2C+Maria+P&rft.au=Mezzapesa%2C+Domenico+M&rft.au=Savarese%2C+Mariantonietta&rft.au=DelRosso%2C+Lourdes+M&rft.date=2021-12-01&rft.issn=1878-5506&rft.eissn=1878-5506&rft.volume=88&rft.spage=74&rft_id=info:doi/10.1016%2Fj.sleep.2021.10.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-9457&client=summon