Efficiency of minimizing compositions of convex functions and smooth maps
We consider global efficiency of algorithms for minimizing a sum of a convex function and a composition of a Lipschitz convex function with a smooth map. The basic algorithm we rely on is the prox-linear method, which in each iteration solves a regularized subproblem formed by linearizing the smooth...
Uložené v:
| Vydané v: | Mathematical programming Ročník 178; číslo 1-2; s. 503 - 558 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider global efficiency of algorithms for minimizing a sum of a convex function and a composition of a Lipschitz convex function with a smooth map. The basic algorithm we rely on is the prox-linear method, which in each iteration solves a regularized subproblem formed by linearizing the smooth map. When the subproblems are solved exactly, the method has efficiency
O
(
ε
-
2
)
, akin to gradient descent for smooth minimization. We show that when the subproblems can only be solved by first-order methods, a simple combination of smoothing, the prox-linear method, and a fast-gradient scheme yields an algorithm with complexity
O
~
(
ε
-
3
)
. We round off the paper with an inertial prox-linear method that automatically accelerates in presence of convexity. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-018-1311-3 |