Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems

The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 125; číslo 1; s. 47 - 73
Hlavní autoři: Fernández, Damián, Solodov, Mikhail
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.09.2010
Springer
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the strong second-order sufficient condition for optimality (without any constraint qualification assumptions). We prove a stronger superlinear convergence result than the above, assuming the usual second-order sufficient condition only. In addition, our analysis is carried out in the more general setting of variational problems, for which we introduce a natural extension of sSQP techniques. In the process, we also obtain a new error bound for Karush–Kuhn–Tucker systems for variational problems that holds under an appropriate second-order condition.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-008-0255-4