ANALYSIS OF A QUADRATIC PROGRAMMING DECOMPOSITION ALGORITHM

We analyze a decomposition algorithm for minimizing a quadratic objective function, separable in x₁ and x₂, subject to the constraint that x₁ and x₂ are orthogonal vectors on the unit sphere. Our algorithm consists of a local step where we minimize the objective function in either variable separatel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis Jg. 47; H. 6; S. 4517 - 4539
Hauptverfasser: BENCTEUX, G., CANCÉS, E., HAGER, W. W., LE BRIS, C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2010
Schlagworte:
ISSN:0036-1429, 1095-7170
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze a decomposition algorithm for minimizing a quadratic objective function, separable in x₁ and x₂, subject to the constraint that x₁ and x₂ are orthogonal vectors on the unit sphere. Our algorithm consists of a local step where we minimize the objective function in either variable separately, while enforcing the constraints, followed by a global step where we minimize over a subspace generated by solutions to the local subproblems. We establish a local convergence result when the global minimizers are nondegenerate. Our analysis employs necessary and sufficient conditions and continuity properties for a global optimum of a quadratic objective function subject to a sphere constraint and a linear constraint. The analysis is connected with a new domain decomposition algorithm for electronic structure calculations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
ISSN:0036-1429
1095-7170
DOI:10.1137/070701728