A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem

This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ain Shams Engineering Journal Ročník 12; číslo 2; s. 2125 - 2133
Hlavní autoři: Elsisy, M.A., El Sayed, M.A., Abo-Elnaga, Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2021
Elsevier
Témata:
ISSN:2090-4479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic models. The weighted method and the Karush-Kuhn-Tucker optimality condition are combined to obtain the Pareto front of each model. The nature of the problem solutions is characterized according to newly proposed definitions. The location of efficient solutions depending on the lower/upper approximation set is discussed. The aim of the proposed solution procedure for the BL-MRNPP is to avoid solving four problems. A numerical example is solved to indicate the applicability of the proposed algorithm.
ISSN:2090-4479
DOI:10.1016/j.asej.2020.11.006