A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem

This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ain Shams Engineering Journal Jg. 12; H. 2; S. 2125 - 2133
Hauptverfasser: Elsisy, M.A., El Sayed, M.A., Abo-Elnaga, Y.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2021
Elsevier
Schlagworte:
ISSN:2090-4479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic models. The weighted method and the Karush-Kuhn-Tucker optimality condition are combined to obtain the Pareto front of each model. The nature of the problem solutions is characterized according to newly proposed definitions. The location of efficient solutions depending on the lower/upper approximation set is discussed. The aim of the proposed solution procedure for the BL-MRNPP is to avoid solving four problems. A numerical example is solved to indicate the applicability of the proposed algorithm.
AbstractList This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this algorithm, the uncertainty exists in constraints which are modeled as a rough set. Initially, BL-MRNPP is transformed into four deterministic models. The weighted method and the Karush-Kuhn-Tucker optimality condition are combined to obtain the Pareto front of each model. The nature of the problem solutions is characterized according to newly proposed definitions. The location of efficient solutions depending on the lower/upper approximation set is discussed. The aim of the proposed solution procedure for the BL-MRNPP is to avoid solving four problems. A numerical example is solved to indicate the applicability of the proposed algorithm.
Author Elsisy, M.A.
El Sayed, M.A.
Abo-Elnaga, Y.
Author_xml – sequence: 1
  givenname: M.A.
  surname: Elsisy
  fullname: Elsisy, M.A.
  organization: Department of Basic Engineering Sciences, Benha Faculty of Engineering, Benha University, ElQalyoubia, Egypt
– sequence: 2
  givenname: M.A.
  surname: El Sayed
  fullname: El Sayed, M.A.
  organization: Department of Basic Engineering Sciences, Benha Faculty of Engineering, Benha University, ElQalyoubia, Egypt
– sequence: 3
  givenname: Y.
  surname: Abo-Elnaga
  fullname: Abo-Elnaga, Y.
  organization: Department of Basic Sciences, Higher Technological Institute, Tenth of Ramadan City, Egypt
BookMark eNp9kE1rHSEUQF2k0DTNH-jKPzCvfs0XdBNCmwYC7aJdy1WvEwdnfDjmQf99nbxkk0VWXi6co55P5GJNKxLyhbMDZ7z7Oh9gw_kgmKgLfmCsuyCXgo2sUaofP5LrbQuG1VkM7dBekuMNXdMJI4U4pRzK40J9ynTCFTOUsE70N2Qsifqc1hIw0-SpCU3EHVqeYglNMjPaEk5Ic3qaHqtwjWFFyPSY05RhWXZPnU3E5TP54CFueP1yXpG_P77_uf3ZPPy6u7-9eWis4qw0PVeghAVjmDGybU3vlXTcexh7J2EUAgbTydZKMEyi740bfOs76ZR3wnp5Re7PXpdg1sccFsj_dIKgnxcpTxpyCTaiHjqPinM5toNXbrCjV8BHIzsnTb3VVNdwdtmcti2j1zaUWqcWyRCi5kzv8fWs9_h6j6851zV-RcUb9PUp70LfzhDWQKcaXW824GrRhVxL1x-E9_D_X1aljA
CitedBy_id crossref_primary_10_1007_s13198_024_02292_0
crossref_primary_10_1007_s42979_022_01333_4
crossref_primary_10_1016_j_cie_2024_110631
crossref_primary_10_1016_j_eswa_2025_126729
crossref_primary_10_1016_j_omega_2023_102914
crossref_primary_10_1007_s43069_024_00294_z
crossref_primary_10_1016_j_eswa_2023_121833
crossref_primary_10_3233_JIFS_200382
crossref_primary_10_3390_math13081242
crossref_primary_10_1007_s00500_021_06374_0
crossref_primary_10_1007_s13369_025_10081_5
crossref_primary_10_3390_agriculture12101669
crossref_primary_10_1007_s00500_023_09563_1
crossref_primary_10_3390_app122312299
crossref_primary_10_1016_j_eswa_2023_122762
crossref_primary_10_1007_s11280_022_01082_7
crossref_primary_10_1007_s00500_022_07114_8
crossref_primary_10_1155_2022_3889000
crossref_primary_10_1007_s00500_023_09468_z
crossref_primary_10_1007_s00500_022_07302_6
crossref_primary_10_1007_s12190_023_01871_x
crossref_primary_10_1007_s00500_023_09508_8
crossref_primary_10_1016_j_eswa_2022_117264
crossref_primary_10_1007_s00500_023_08336_0
crossref_primary_10_1007_s13369_024_08952_4
crossref_primary_10_1080_0305215X_2023_2195645
crossref_primary_10_1016_j_eswa_2023_122734
crossref_primary_10_1016_j_ceramint_2024_12_450
crossref_primary_10_1007_s00500_023_08042_x
crossref_primary_10_1007_s00500_023_08292_9
crossref_primary_10_1017_S026357472300070X
crossref_primary_10_1088_1742_6596_2847_1_012003
Cites_doi 10.5772/6440
10.1007/s12597-016-0290-5
10.9734/BJMCS/2017/30626
10.1023/A:1011268113791
10.1007/s00500-018-3217-7
10.12785/amis/080622
10.1007/s12597-019-00368-1
10.1016/j.mcm.2008.01.003
10.1007/s00500-018-3205-y
10.1007/s12597-017-0300-2
10.1155/2020/9207650
10.1016/j.ijar.2010.08.012
10.9734/BJMCS/2016/28531
10.3233/FI-1996-272301
10.1007/s12597-020-00461-w
10.1007/BF01001956
10.9734/BJMCS/2015/13430
10.1016/j.aej.2019.12.002
10.1016/j.asej.2020.03.003
10.1016/j.fss.2009.02.022
10.1007/s12597-013-0145-2
10.1016/j.ejor.2007.12.019
10.1016/j.knosys.2014.12.016
10.1016/j.apm.2012.03.002
10.1007/978-3-642-19893-9_19
10.1016/j.ejor.2005.08.024
10.1007/s10107-012-0535-x
ContentType Journal Article
Copyright 2020 Faculty of Engineering, Ain Shams University
Copyright_xml – notice: 2020 Faculty of Engineering, Ain Shams University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.asej.2020.11.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 2133
ExternalDocumentID oai_doaj_org_article_86fe4113958f4d8c9f4a19b36d3bf43b
10_1016_j_asej_2020_11_006
S2090447920302732
GroupedDBID 6I.
AAFTH
ALMA_UNASSIGNED_HOLDINGS
M~E
AAYXX
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c410t-714a42cabb0bb355b7f43d1ffa97d3a922a8b635c3ab03ef7bd8f5f63d4fd2cf3
IEDL.DBID DOA
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658517800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2090-4479
IngestDate Fri Oct 03 12:52:36 EDT 2025
Tue Nov 18 20:54:00 EST 2025
Wed Nov 05 20:47:07 EST 2025
Sat Apr 29 16:16:28 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Multi-objective programming
Bi-level programming
KKT optimality
Rough set
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-714a42cabb0bb355b7f43d1ffa97d3a922a8b635c3ab03ef7bd8f5f63d4fd2cf3
OpenAccessLink https://doaj.org/article/86fe4113958f4d8c9f4a19b36d3bf43b
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_86fe4113958f4d8c9f4a19b36d3bf43b
crossref_citationtrail_10_1016_j_asej_2020_11_006
crossref_primary_10_1016_j_asej_2020_11_006
elsevier_sciencedirect_doi_10_1016_j_asej_2020_11_006
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Ain Shams Engineering Journal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Pawlak (b0130) 1996; 27
Elsisy, Elsaadany, El Sayed (b0055) 2020
Pawlak (b0125) 1982; 11
Ranarahu, Dash, Acharya (b0135) 2017; 54
AbdAlhakim, Emam, El-Mageed (b0010) 2019; 56
Elsisy, El Sayed (b0045) 2019; 58
Gumus, Floudas (b0075) 2001; 20
S. Rissino, G. Lambert-Torres, Rough set theory-fundamental concepts, principals, data extraction, and applications. In: Data mining and knowledge discovery in real life applications. IntechOpen; 2009.
Baky (b0025) 2009; 160
Baky, Eid, Elsayed (b0020) 2014; 51
Shi, Lu, Zhang (b0160) 2005; 162
El Sayed MA, Farahat FA. Study of achievement stability set for parametric linear FGP problems. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2020.03.003.
Osman, Emam, El Sayed (b0105) 2016; 18
Arora, Gupta (b0005) 2009; 194
Emam, El-Araby, Belal (b0040) 2015; 4
Pramanik, Roy (b0120) 2007; 176
Saad, Emam, Sleem (b0155) 2015; 5
Osman, Emam, El Sayed (b0110) 2018; 7
Chen, Chen (b0035) 2015; 76
Youness, Emam, Hafez (b0170) 2014; 8
Kong, Xu (b0085) 2019; 23
Osman, Raslan, Emam, Farahat (b0115) 2017; 21
Ren (b0140) 2015; 2
Miettinen (b0095) 2012
Elsisy, Eid, Osman (b0050) 2017; 54
Baky, Abo-Sinna (b0030) 2013; 37
Eichfelder G. Solving nonlinear multiobjective bilevel optimization problems with coupled upper level constraints. Evolutionary Multi-Criterion Optimization 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_19.
Xu J, yao L. A class of multi objective linear programming models with random rough coefficient. Math Comput Model 49; 2009:189–206.
Shi, Yao, Xu (b0150) 2011; 52
El Sayed, Baky, Singh (b0060) 2020; 57
Allende, Still (b0015) 2013; 138
Hamzehee, Yaghoobi, Mashinchi (b0080) 2014; 26
Nayak, Ojha (b0100) 2019; 23
Baky (10.1016/j.asej.2020.11.006_b0030) 2013; 37
AbdAlhakim (10.1016/j.asej.2020.11.006_b0010) 2019; 56
10.1016/j.asej.2020.11.006_b0070
Elsisy (10.1016/j.asej.2020.11.006_b0045) 2019; 58
Arora (10.1016/j.asej.2020.11.006_b0005) 2009; 194
Osman (10.1016/j.asej.2020.11.006_b0115) 2017; 21
Baky (10.1016/j.asej.2020.11.006_b0020) 2014; 51
El Sayed (10.1016/j.asej.2020.11.006_b0060) 2020; 57
Kong (10.1016/j.asej.2020.11.006_b0085) 2019; 23
Nayak (10.1016/j.asej.2020.11.006_b0100) 2019; 23
Pramanik (10.1016/j.asej.2020.11.006_b0120) 2007; 176
Ranarahu (10.1016/j.asej.2020.11.006_b0135) 2017; 54
Allende (10.1016/j.asej.2020.11.006_b0015) 2013; 138
Shi (10.1016/j.asej.2020.11.006_b0160) 2005; 162
Saad (10.1016/j.asej.2020.11.006_b0155) 2015; 5
Miettinen (10.1016/j.asej.2020.11.006_b0095) 2012
Osman (10.1016/j.asej.2020.11.006_b0110) 2018; 7
10.1016/j.asej.2020.11.006_b0145
Shi (10.1016/j.asej.2020.11.006_b0150) 2011; 52
10.1016/j.asej.2020.11.006_b0065
Elsisy (10.1016/j.asej.2020.11.006_b0050) 2017; 54
Ren (10.1016/j.asej.2020.11.006_b0140) 2015; 2
10.1016/j.asej.2020.11.006_b0165
Osman (10.1016/j.asej.2020.11.006_b0105) 2016; 18
Pawlak (10.1016/j.asej.2020.11.006_b0125) 1982; 11
Emam (10.1016/j.asej.2020.11.006_b0040) 2015; 4
Pawlak (10.1016/j.asej.2020.11.006_b0130) 1996; 27
Chen (10.1016/j.asej.2020.11.006_b0035) 2015; 76
Gumus (10.1016/j.asej.2020.11.006_b0075) 2001; 20
Hamzehee (10.1016/j.asej.2020.11.006_b0080) 2014; 26
Baky (10.1016/j.asej.2020.11.006_b0025) 2009; 160
Elsisy (10.1016/j.asej.2020.11.006_b0055) 2020
Youness (10.1016/j.asej.2020.11.006_b0170) 2014; 8
References_xml – volume: 51
  start-page: 280
  year: 2014
  end-page: 296
  ident: b0020
  article-title: Bi-level multi-objective programming problem with fuzzy demands: a fuzzy goal programming algorithm
  publication-title: Opsearch
– volume: 57
  start-page: 1374
  year: 2020
  end-page: 1403
  ident: b0060
  article-title: A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision-making problem
  publication-title: Opsearch
– volume: 2
  start-page: 1
  year: 2015
  end-page: 11
  ident: b0140
  article-title: A novel method for solving the fully fuzzy bilevel linear programming problem
  publication-title: Math Probl Eng
– volume: 194
  start-page: 368
  year: 2009
  end-page: 376
  ident: b0005
  article-title: interactive fuzzy goal programming approach for bi-level programming problem
  publication-title: Eur J Oper Res
– volume: 76
  start-page: 189
  year: 2015
  end-page: 199
  ident: b0035
  article-title: A two-phase fuzzy approach for solving multi-level decision-making problems
  publication-title: Knowl-Based Syst
– volume: 27
  start-page: 103
  year: 1996
  end-page: 108
  ident: b0130
  article-title: Rough sets, rough relations and rough functions
  publication-title: Fundament Inform
– volume: 54
  start-page: 475
  year: 2017
  end-page: 504
  ident: b0135
  article-title: Multi-objective bilevel fuzzy probabilistic programming problem
  publication-title: Opsearch
– volume: 7
  start-page: 139
  year: 2018
  end-page: 149
  ident: b0110
  article-title: Interactive approach for multi-level multi-objective fractional programming problems with fuzzy parameters
  publication-title: Beni-Suef J Basic Appl Sci
– volume: 20
  start-page: 1
  year: 2001
  end-page: 31
  ident: b0075
  article-title: Global optimization of nonlinear bilevel programming problems
  publication-title: J Global Optim
– volume: 160
  start-page: 2701
  year: 2009
  end-page: 2713
  ident: b0025
  article-title: Fuzzy goal programming algorithm for solving decentralized bi-level multi-objective programming problems
  publication-title: Fuzzy Sets Syst
– volume: 52
  start-page: 261
  year: 2011
  end-page: 280
  ident: b0150
  article-title: A probability maximization model based on rough approximation and its application to the inventory problem
  publication-title: Int J Approx Reason
– volume: 18
  start-page: 1
  year: 2016
  end-page: 19
  ident: b0105
  article-title: On parametric multilevel multi-objective fractional programming problems with fuzziness in the constraints
  publication-title: Brit J Math Comput Sci
– volume: 176
  start-page: 1151
  year: 2007
  end-page: 1166
  ident: b0120
  article-title: Fuzzy goal programming approach to multi-level programming problems
  publication-title: Eur J Oper Res
– year: 2012
  ident: b0095
  article-title: Nonlinear multiobjective optimization
– volume: 58
  start-page: 1471
  year: 2019
  end-page: 1482
  ident: b0045
  article-title: Fuzzy rough bi-level multi-objective non-linear programming problems
  publication-title: Alex Eng J
– volume: 8
  start-page: 2857
  year: 2014
  end-page: 2863
  ident: b0170
  article-title: Fuzzy bi-level multi-objective fractional integer programming
  publication-title: Appl Math Inform Sci
– volume: 54
  start-page: 724
  year: 2017
  end-page: 734
  ident: b0050
  article-title: Qualitative analysis of basic notions in parametric rough convex programming (parameters in the objective function and feasible region is a rough set)
  publication-title: Opsearch
– volume: 4
  start-page: 41
  year: 2015
  end-page: 49
  ident: b0040
  article-title: On rough multi-level linear programming problem
  publication-title: Inform Sci Lett
– volume: 26
  start-page: 1179
  year: 2014
  end-page: 1189
  ident: b0080
  article-title: Linear programming with rough interval coefficients
  publication-title: Intell Fuzzy Syst
– reference: Xu J, yao L. A class of multi objective linear programming models with random rough coefficient. Math Comput Model 49; 2009:189–206.
– volume: 23
  start-page: 5605
  year: 2019
  end-page: 5618
  ident: b0100
  article-title: An approach of fuzzy and TOPSIS to bi-level multi-objective nonlinear fractional programming problem
  publication-title: Soft Comput
– reference: S. Rissino, G. Lambert-Torres, Rough set theory-fundamental concepts, principals, data extraction, and applications. In: Data mining and knowledge discovery in real life applications. IntechOpen; 2009.
– year: 2020
  ident: b0055
  article-title: Using interval operations in the Hungarian method to solve the fuzzy assignment problem and its application in the rehabilitation problem of valuable buildings in Egypt
  publication-title: Complexity
– volume: 138
  start-page: 309
  year: 2013
  end-page: 332
  ident: b0015
  article-title: Solving bilevel programs with the KKT-approach
  publication-title: Math Program
– reference: Eichfelder G. Solving nonlinear multiobjective bilevel optimization problems with coupled upper level constraints. Evolutionary Multi-Criterion Optimization 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_19.
– volume: 21
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0115
  article-title: Solving multi-level multi-objective fractional programming problem with rough intervals in the objective functions
  publication-title: Brit J Math Comput Sci
– volume: 162
  start-page: 51
  year: 2005
  end-page: 63
  ident: b0160
  article-title: An extended Kuhn-Tucker approach for linear bilevel programming
  publication-title: Appl Math Comput
– volume: 37
  start-page: 1004
  year: 2013
  end-page: 1015
  ident: b0030
  article-title: TOPSIS for bi-level MODM problems
  publication-title: Appl Math Model
– reference: El Sayed MA, Farahat FA. Study of achievement stability set for parametric linear FGP problems. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2020.03.003.
– volume: 56
  start-page: 367
  year: 2019
  end-page: 389
  ident: b0010
  article-title: Architecting a fully fuzzy information model for multi-level quadratically constrained quadratic programming problem
  publication-title: Opsearch
– volume: 23
  start-page: 3237
  year: 2019
  end-page: 3251
  ident: b0085
  article-title: The comparative study of covering rough sets and multi-granulation rough sets
  publication-title: Soft Comput
– volume: 11
  start-page: 341
  year: 1982
  end-page: 356
  ident: b0125
  article-title: Rough sets
  publication-title: Int J Comput Inform Sci
– volume: 5
  start-page: 349
  year: 2015
  end-page: 366
  ident: b0155
  article-title: On the solution of a rough interval three-level quadratic programming problem
  publication-title: Brit J Math Comput Sci
– ident: 10.1016/j.asej.2020.11.006_b0145
  doi: 10.5772/6440
– volume: 54
  start-page: 475
  issue: 3
  year: 2017
  ident: 10.1016/j.asej.2020.11.006_b0135
  article-title: Multi-objective bilevel fuzzy probabilistic programming problem
  publication-title: Opsearch
  doi: 10.1007/s12597-016-0290-5
– volume: 21
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.asej.2020.11.006_b0115
  article-title: Solving multi-level multi-objective fractional programming problem with rough intervals in the objective functions
  publication-title: Brit J Math Comput Sci
  doi: 10.9734/BJMCS/2017/30626
– volume: 20
  start-page: 1
  year: 2001
  ident: 10.1016/j.asej.2020.11.006_b0075
  article-title: Global optimization of nonlinear bilevel programming problems
  publication-title: J Global Optim
  doi: 10.1023/A:1011268113791
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.asej.2020.11.006_b0140
  article-title: A novel method for solving the fully fuzzy bilevel linear programming problem
  publication-title: Math Probl Eng
– volume: 23
  start-page: 5605
  issue: 14
  year: 2019
  ident: 10.1016/j.asej.2020.11.006_b0100
  article-title: An approach of fuzzy and TOPSIS to bi-level multi-objective nonlinear fractional programming problem
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3217-7
– volume: 8
  start-page: 2857
  issue: 6
  year: 2014
  ident: 10.1016/j.asej.2020.11.006_b0170
  article-title: Fuzzy bi-level multi-objective fractional integer programming
  publication-title: Appl Math Inform Sci
  doi: 10.12785/amis/080622
– volume: 56
  start-page: 367
  issue: 2
  year: 2019
  ident: 10.1016/j.asej.2020.11.006_b0010
  article-title: Architecting a fully fuzzy information model for multi-level quadratically constrained quadratic programming problem
  publication-title: Opsearch
  doi: 10.1007/s12597-019-00368-1
– ident: 10.1016/j.asej.2020.11.006_b0165
  doi: 10.1016/j.mcm.2008.01.003
– volume: 23
  start-page: 3237
  issue: 10
  year: 2019
  ident: 10.1016/j.asej.2020.11.006_b0085
  article-title: The comparative study of covering rough sets and multi-granulation rough sets
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3205-y
– year: 2012
  ident: 10.1016/j.asej.2020.11.006_b0095
– volume: 54
  start-page: 724
  issue: 4
  year: 2017
  ident: 10.1016/j.asej.2020.11.006_b0050
  article-title: Qualitative analysis of basic notions in parametric rough convex programming (parameters in the objective function and feasible region is a rough set)
  publication-title: Opsearch
  doi: 10.1007/s12597-017-0300-2
– year: 2020
  ident: 10.1016/j.asej.2020.11.006_b0055
  article-title: Using interval operations in the Hungarian method to solve the fuzzy assignment problem and its application in the rehabilitation problem of valuable buildings in Egypt
  publication-title: Complexity
  doi: 10.1155/2020/9207650
– volume: 52
  start-page: 261
  issue: 2
  year: 2011
  ident: 10.1016/j.asej.2020.11.006_b0150
  article-title: A probability maximization model based on rough approximation and its application to the inventory problem
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2010.08.012
– volume: 18
  start-page: 1
  issue: 5
  year: 2016
  ident: 10.1016/j.asej.2020.11.006_b0105
  article-title: On parametric multilevel multi-objective fractional programming problems with fuzziness in the constraints
  publication-title: Brit J Math Comput Sci
  doi: 10.9734/BJMCS/2016/28531
– volume: 27
  start-page: 103
  year: 1996
  ident: 10.1016/j.asej.2020.11.006_b0130
  article-title: Rough sets, rough relations and rough functions
  publication-title: Fundament Inform
  doi: 10.3233/FI-1996-272301
– volume: 57
  start-page: 1374
  year: 2020
  ident: 10.1016/j.asej.2020.11.006_b0060
  article-title: A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision-making problem
  publication-title: Opsearch
  doi: 10.1007/s12597-020-00461-w
– volume: 11
  start-page: 341
  issue: 5
  year: 1982
  ident: 10.1016/j.asej.2020.11.006_b0125
  article-title: Rough sets
  publication-title: Int J Comput Inform Sci
  doi: 10.1007/BF01001956
– volume: 162
  start-page: 51
  year: 2005
  ident: 10.1016/j.asej.2020.11.006_b0160
  article-title: An extended Kuhn-Tucker approach for linear bilevel programming
  publication-title: Appl Math Comput
– volume: 5
  start-page: 349
  issue: 3
  year: 2015
  ident: 10.1016/j.asej.2020.11.006_b0155
  article-title: On the solution of a rough interval three-level quadratic programming problem
  publication-title: Brit J Math Comput Sci
  doi: 10.9734/BJMCS/2015/13430
– volume: 58
  start-page: 1471
  year: 2019
  ident: 10.1016/j.asej.2020.11.006_b0045
  article-title: Fuzzy rough bi-level multi-objective non-linear programming problems
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2019.12.002
– volume: 7
  start-page: 139
  issue: 1
  year: 2018
  ident: 10.1016/j.asej.2020.11.006_b0110
  article-title: Interactive approach for multi-level multi-objective fractional programming problems with fuzzy parameters
  publication-title: Beni-Suef J Basic Appl Sci
– ident: 10.1016/j.asej.2020.11.006_b0065
  doi: 10.1016/j.asej.2020.03.003
– volume: 160
  start-page: 2701
  issue: 18
  year: 2009
  ident: 10.1016/j.asej.2020.11.006_b0025
  article-title: Fuzzy goal programming algorithm for solving decentralized bi-level multi-objective programming problems
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2009.02.022
– volume: 51
  start-page: 280
  issue: 2
  year: 2014
  ident: 10.1016/j.asej.2020.11.006_b0020
  article-title: Bi-level multi-objective programming problem with fuzzy demands: a fuzzy goal programming algorithm
  publication-title: Opsearch
  doi: 10.1007/s12597-013-0145-2
– volume: 194
  start-page: 368
  issue: 2
  year: 2009
  ident: 10.1016/j.asej.2020.11.006_b0005
  article-title: interactive fuzzy goal programming approach for bi-level programming problem
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2007.12.019
– volume: 76
  start-page: 189
  year: 2015
  ident: 10.1016/j.asej.2020.11.006_b0035
  article-title: A two-phase fuzzy approach for solving multi-level decision-making problems
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2014.12.016
– volume: 37
  start-page: 1004
  year: 2013
  ident: 10.1016/j.asej.2020.11.006_b0030
  article-title: TOPSIS for bi-level MODM problems
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2012.03.002
– ident: 10.1016/j.asej.2020.11.006_b0070
  doi: 10.1007/978-3-642-19893-9_19
– volume: 176
  start-page: 1151
  issue: 2
  year: 2007
  ident: 10.1016/j.asej.2020.11.006_b0120
  article-title: Fuzzy goal programming approach to multi-level programming problems
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.08.024
– volume: 138
  start-page: 309
  issue: 1–2
  year: 2013
  ident: 10.1016/j.asej.2020.11.006_b0015
  article-title: Solving bilevel programs with the KKT-approach
  publication-title: Math Program
  doi: 10.1007/s10107-012-0535-x
– volume: 4
  start-page: 41
  issue: 1
  year: 2015
  ident: 10.1016/j.asej.2020.11.006_b0040
  article-title: On rough multi-level linear programming problem
  publication-title: Inform Sci Lett
– volume: 26
  start-page: 1179
  year: 2014
  ident: 10.1016/j.asej.2020.11.006_b0080
  article-title: Linear programming with rough interval coefficients
  publication-title: Intell Fuzzy Syst
SSID ssib044728585
Score 2.3719714
Snippet This paper discusses a new algorithm for generating the Pareto frontier for bi-level multi-objective rough nonlinear programming problem (BL-MRNPP). In this...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 2125
SubjectTerms Bi-level programming
KKT optimality
Multi-objective programming
Rough set
Title A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem
URI https://dx.doi.org/10.1016/j.asej.2020.11.006
https://doaj.org/article/86fe4113958f4d8c9f4a19b36d3bf43b
Volume 12
WOSCitedRecordID wos000658517800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2090-4479
  databaseCode: M~E
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib044728585
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBIECUlzywoYj4kcYeCwKxgBhA6hb5Ca1KU5XSkd_OnZOisJSFxVJi-xydT7675Mt3hFzkTnnwXDaTfRmgUS6zxkCjorKhYFGYPBWbKB8f1XConzqlvhAT1tADN4q7Uv0YJIM4pVBReuV0lIZpK_pe2CiFxdM3L3UnmQJLkrLk-MELK8vlOs_gWrd_zDTgLvAQY0gOOR4ZCO365ZUSeX_HOXUczt0u2WkjRTponnCPbITpPpkN6LRehgk1k9ca8vq3dwpRJ31N5NGIYKZPWLa2phGJCUAqrSO1o2yC2CCa0INZbcfNKUdTiR4QmNgyzJy2YK13lNNWmjkgL3e3zzf3WVs0IXOS5YusZNJI7oy1ubUQTNgStORZjEaXXhjNuVEWogwnjM1FiKX1KhaxL7yMnrsoDskmrBuOCGUcuovSQIRjoBPnqaKIPKhCG890j7CV0irXMopjYYtJtYKOjStUdIWKhlSjAkX3yOXPnFnDp7F29DXuxc9I5MJON8BCqtZCqr8spEeK1U5WbVjRhAsgarRm8eP_WPyEbHNEwaT3NqdkczH_DGdkyy0Xo4_5eTJaaB--br8Bb1v0eQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+algorithm+for+generating+Pareto+frontier+of+bi-level+multi-objective+rough+nonlinear+programming+problem&rft.jtitle=Ain+Shams+Engineering+Journal&rft.au=M.A.+Elsisy&rft.au=M.A.+El+Sayed&rft.au=Y.+Abo-Elnaga&rft.date=2021-06-01&rft.pub=Elsevier&rft.issn=2090-4479&rft.volume=12&rft.issue=2&rft.spage=2125&rft.epage=2133&rft_id=info:doi/10.1016%2Fj.asej.2020.11.006&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_86fe4113958f4d8c9f4a19b36d3bf43b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-4479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-4479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-4479&client=summon