Perceptual Quality Metric With Internal Generative Mechanism

Objective image quality assessment (IQA) aims to evaluate image quality consistently with human perception. Most of the existing perceptual IQA metrics cannot accurately represent the degradations from different types of distortion, e.g., existing structural similarity metrics perform well on conten...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 22; číslo 1; s. 43 - 54
Hlavní autoři: Wu, Jinjian, Lin, Weisi, Shi, Guangming, Liu, Anmin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.01.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective image quality assessment (IQA) aims to evaluate image quality consistently with human perception. Most of the existing perceptual IQA metrics cannot accurately represent the degradations from different types of distortion, e.g., existing structural similarity metrics perform well on content-dependent distortions while not as well as peak signal-to-noise ratio (PSNR) on content-independent distortions. In this paper, we integrate the merits of the existing IQA metrics with the guide of the recently revealed internal generative mechanism (IGM). The IGM indicates that the human visual system actively predicts sensory information and tries to avoid residual uncertainty for image perception and understanding. Inspired by the IGM theory, we adopt an autoregressive prediction algorithm to decompose an input scene into two portions, the predicted portion with the predicted visual content and the disorderly portion with the residual content. Distortions on the predicted portion degrade the primary visual information, and structural similarity procedures are employed to measure its degradation; distortions on the disorderly portion mainly change the uncertain information and the PNSR is employed for it. Finally, according to the noise energy deployment on the two portions, we combine the two evaluation results to acquire the overall quality score. Experimental results on six publicly available databases demonstrate that the proposed metric is comparable with the state-of-the-art quality metrics.
AbstractList Objective image quality assessment (IQA) aims to evaluate image quality consistently with human perception. Most of the existing perceptual IQA metrics cannot accurately represent the degradations from different types of distortion, e.g., existing structural similarity metrics perform well on content-dependent distortions while not as well as peak signal-to-noise ratio (PSNR) on content-independent distortions. In this paper, we integrate the merits of the existing IQA metrics with the guide of the recently revealed internal generative mechanism (IGM). The IGM indicates that the human visual system actively predicts sensory information and tries to avoid residual uncertainty for image perception and understanding. Inspired by the IGM theory, we adopt an autoregressive prediction algorithm to decompose an input scene into two portions, the predicted portion with the predicted visual content and the disorderly portion with the residual content. Distortions on the predicted portion degrade the primary visual information, and structural similarity procedures are employed to measure its degradation; distortions on the disorderly portion mainly change the uncertain information and the PNSR is employed for it. Finally, according to the noise energy deployment on the two portions, we combine the two evaluation results to acquire the overall quality score. Experimental results on six publicly available databases demonstrate that the proposed metric is comparable with the state-of-the-art quality metrics.
Objective image quality assessment (IQA) aims to evaluate image quality consistently with human perception. Most of the existing perceptual IQA metrics cannot accurately represent the degradations from different types of distortion, e.g., existing structural similarity metrics perform well on content-dependent distortions while not as well as peak signal-to-noise ratio (PSNR) on content-independent distortions. In this paper, we integrate the merits of the existing IQA metrics with the guide of the recently revealed internal generative mechanism (IGM). The IGM indicates that the human visual system actively predicts sensory information and tries to avoid residual uncertainty for image perception and understanding. Inspired by the IGM theory, we adopt an autoregressive prediction algorithm to decompose an input scene into two portions, the predicted portion with the predicted visual content and the disorderly portion with the residual content. Distortions on the predicted portion degrade the primary visual information, and structural similarity procedures are employed to measure its degradation; distortions on the disorderly portion mainly change the uncertain information and the PNSR is employed for it. Finally, according to the noise energy deployment on the two portions, we combine the two evaluation results to acquire the overall quality score. Experimental results on six publicly available databases demonstrate that the proposed metric is comparable with the state-of-the-art quality metrics.Objective image quality assessment (IQA) aims to evaluate image quality consistently with human perception. Most of the existing perceptual IQA metrics cannot accurately represent the degradations from different types of distortion, e.g., existing structural similarity metrics perform well on content-dependent distortions while not as well as peak signal-to-noise ratio (PSNR) on content-independent distortions. In this paper, we integrate the merits of the existing IQA metrics with the guide of the recently revealed internal generative mechanism (IGM). The IGM indicates that the human visual system actively predicts sensory information and tries to avoid residual uncertainty for image perception and understanding. Inspired by the IGM theory, we adopt an autoregressive prediction algorithm to decompose an input scene into two portions, the predicted portion with the predicted visual content and the disorderly portion with the residual content. Distortions on the predicted portion degrade the primary visual information, and structural similarity procedures are employed to measure its degradation; distortions on the disorderly portion mainly change the uncertain information and the PNSR is employed for it. Finally, according to the noise energy deployment on the two portions, we combine the two evaluation results to acquire the overall quality score. Experimental results on six publicly available databases demonstrate that the proposed metric is comparable with the state-of-the-art quality metrics.
Author Guangming Shi
Weisi Lin
Jinjian Wu
Anmin Liu
Author_xml – sequence: 1
  givenname: Jinjian
  surname: Wu
  fullname: Wu, Jinjian
  email: jinjian.wu@mail.xidian.edu.cn
  organization: Key Laboratory of Intelligent Perception and Image Understanding of the Ministry of Education of China, School of Electronic Engineering, Xidian University, Xi’an 710071, China. jinjian.wu@mail.xidian.edu.cn
– sequence: 2
  givenname: Weisi
  surname: Lin
  fullname: Lin, Weisi
– sequence: 3
  givenname: Guangming
  surname: Shi
  fullname: Shi, Guangming
– sequence: 4
  givenname: Anmin
  surname: Liu
  fullname: Liu, Anmin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26853904$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22910116$$D View this record in MEDLINE/PubMed
BookMark eNqN0d9rFDEQB_AgFftD3wVBDorgy56Z_Los-CJF60GLFSo-htncLE3Zy55JttD_3px3VeiD9CUJzGcCM99jdhDHSIy9Bj4H4O2H6-XVXHAQcyFAcWWfsSNoFTScK3FQ31wvmgWo9pAd53zLOSgN5gU7FKIFDmCO2McrSp42ZcJh9r0eodzPLqmk4Gc_Q7mZLWOhFGvxnCIlLOGOat3fYAx5_ZI973HI9Gp_n7AfXz5fn31tLr6dL88-XTReAS-N1tTZFQrrLVrbt2KlPXK0vrUCELT1SmvsFqRED9Ra7EzXtSsje2mFRCNP2Pvdv5s0_pooF7cO2dMwYKRxyg6ElUZzI_kT6EIaK6zY0tNH9HactrP-UUIpri1U9Xavpm5NK7dJYY3p3j2ssIJ3e4DZ49AnjD7kf85YLVuuqjM759OYc6Le-VDqQsdYEobBAXfbTF3N1G0zdftMayN_1Pjw939a3uxaAhH95aZOJbWWvwG1F6h_
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TBC_2014_2344471
crossref_primary_10_1109_TIP_2020_2969777
crossref_primary_10_1016_j_knosys_2025_114060
crossref_primary_10_1016_j_jvcir_2015_08_009
crossref_primary_10_1371_journal_pone_0199430
crossref_primary_10_1007_s11432_014_5269_3
crossref_primary_10_1016_j_dsp_2016_05_012
crossref_primary_10_3390_rs12152349
crossref_primary_10_1109_ACCESS_2021_3127269
crossref_primary_10_1109_JSTSP_2019_2955024
crossref_primary_10_1109_TCSVT_2014_2372343
crossref_primary_10_1371_journal_pone_0158333
crossref_primary_10_1109_TIP_2016_2598492
crossref_primary_10_1109_TMM_2017_2729020
crossref_primary_10_1049_ipr2_12060
crossref_primary_10_1364_AO_56_008291
crossref_primary_10_1109_TMM_2018_2817072
crossref_primary_10_1016_j_ins_2020_04_030
crossref_primary_10_1109_TCSVT_2020_3026817
crossref_primary_10_1016_j_patcog_2018_04_016
crossref_primary_10_1109_TMM_2016_2547343
crossref_primary_10_1109_LSP_2016_2537321
crossref_primary_10_1109_TMM_2015_2484221
crossref_primary_10_1109_ACCESS_2020_3011474
crossref_primary_10_1016_j_image_2013_08_006
crossref_primary_10_1109_LSP_2015_2500819
crossref_primary_10_1109_TIE_2017_2652339
crossref_primary_10_1109_TIP_2021_3064195
crossref_primary_10_1109_TCSVT_2019_2955011
crossref_primary_10_1016_j_neucom_2018_12_029
crossref_primary_10_1007_s11220_017_0160_0
crossref_primary_10_1016_j_image_2019_07_014
crossref_primary_10_3389_fnins_2022_1118087
crossref_primary_10_1109_ACCESS_2025_3531500
crossref_primary_10_1109_TIP_2022_3154588
crossref_primary_10_1016_j_jvcir_2018_11_019
crossref_primary_10_1109_TIP_2017_2733164
crossref_primary_10_1109_TIP_2018_2875913
crossref_primary_10_1109_TCSVT_2016_2602764
crossref_primary_10_3389_fnins_2021_766762
crossref_primary_10_3390_s23042279
crossref_primary_10_1016_j_ins_2017_10_053
crossref_primary_10_1016_j_neucom_2016_06_070
crossref_primary_10_1109_LSP_2014_2304714
crossref_primary_10_1016_j_neucom_2017_10_017
crossref_primary_10_2478_jee_2022_0011
crossref_primary_10_1016_j_jvcir_2015_04_001
crossref_primary_10_1109_TMI_2024_3418652
crossref_primary_10_1016_j_neucom_2018_02_050
crossref_primary_10_1007_s11760_015_0818_9
crossref_primary_10_1016_j_cag_2018_04_005
crossref_primary_10_1016_j_image_2019_02_010
crossref_primary_10_3390_a10030072
crossref_primary_10_3390_rs17071215
crossref_primary_10_1109_TCSVT_2015_2511838
crossref_primary_10_1016_j_ins_2016_02_043
crossref_primary_10_1109_ACCESS_2019_2901063
crossref_primary_10_1109_TBC_2015_2511624
crossref_primary_10_1109_TCSVT_2020_3030895
crossref_primary_10_1007_s11042_017_4636_7
crossref_primary_10_3390_a13100257
crossref_primary_10_1016_j_jvcir_2018_10_027
crossref_primary_10_1016_j_jvcir_2018_12_035
crossref_primary_10_1016_j_dsp_2018_12_007
crossref_primary_10_1109_TCYB_2016_2575544
crossref_primary_10_3390_electronics10182256
crossref_primary_10_1007_s11704_016_6213_z
crossref_primary_10_1109_TIP_2017_2711279
crossref_primary_10_1016_j_sigpro_2016_03_026
crossref_primary_10_1109_TIP_2017_2766780
crossref_primary_10_1109_TIM_2021_3096865
crossref_primary_10_1016_j_neucom_2016_08_143
crossref_primary_10_1109_TIP_2015_2460467
crossref_primary_10_1109_TCYB_2019_2899005
crossref_primary_10_1109_ACCESS_2017_2666218
crossref_primary_10_1109_TCYB_2015_2401732
crossref_primary_10_1016_j_eswa_2014_10_050
crossref_primary_10_1016_j_image_2025_117370
crossref_primary_10_1007_s11432_019_2757_1
crossref_primary_10_1007_s11042_016_4335_9
crossref_primary_10_1080_23311975_2024_2349253
crossref_primary_10_1109_TCSVT_2019_2890878
crossref_primary_10_1109_TIP_2017_2665972
crossref_primary_10_1145_2964908
crossref_primary_10_1016_j_displa_2024_102858
crossref_primary_10_1109_TCSVT_2015_2412773
crossref_primary_10_1016_j_ins_2020_12_018
crossref_primary_10_1109_TMM_2013_2268053
crossref_primary_10_1109_TCSVT_2014_2372392
crossref_primary_10_1109_TIP_2024_3468893
crossref_primary_10_1093_comjnl_bxaa089
crossref_primary_10_1109_ACCESS_2020_3000225
crossref_primary_10_1109_TVCG_2017_2771284
crossref_primary_10_1109_TIP_2013_2279934
crossref_primary_10_1016_j_image_2023_117025
crossref_primary_10_1109_ACCESS_2018_2825368
crossref_primary_10_1109_TIP_2017_2781307
crossref_primary_10_1016_j_gmod_2018_07_001
crossref_primary_10_1109_TBC_2015_2459851
crossref_primary_10_1109_TVCG_2023_3338359
crossref_primary_10_1109_TIM_2021_3103247
crossref_primary_10_1109_TIP_2020_3003218
crossref_primary_10_1109_TIM_2025_3544722
crossref_primary_10_1016_j_dsp_2019_02_017
crossref_primary_10_1109_TIP_2018_2881828
crossref_primary_10_1109_TSMC_2017_2676180
crossref_primary_10_1109_TII_2017_2756666
crossref_primary_10_1007_s11042_016_3755_x
crossref_primary_10_1109_ACCESS_2018_2798573
crossref_primary_10_1016_j_dsp_2023_104109
crossref_primary_10_1016_j_ins_2019_07_061
crossref_primary_10_1109_TPAMI_2025_3567814
crossref_primary_10_1109_TIP_2019_2952010
crossref_primary_10_1016_j_jvcir_2015_01_006
crossref_primary_10_1109_TMM_2014_2373812
crossref_primary_10_1016_j_neucom_2017_01_054
crossref_primary_10_1109_TIP_2015_2436332
crossref_primary_10_1109_TCYB_2015_2512852
crossref_primary_10_1109_TMM_2016_2594142
crossref_primary_10_1016_j_image_2016_05_004
crossref_primary_10_1016_j_image_2019_08_013
crossref_primary_10_1109_TCSVT_2024_3454160
crossref_primary_10_1109_TIE_2020_2965469
crossref_primary_10_1016_j_image_2016_05_008
crossref_primary_10_1016_j_neucom_2017_05_034
crossref_primary_10_1016_j_jvcir_2016_03_010
crossref_primary_10_1109_ACCESS_2024_3506273
crossref_primary_10_1007_s11042_022_12478_y
crossref_primary_10_1587_transinf_2016EDL8255
crossref_primary_10_1007_s11760_016_0873_x
crossref_primary_10_1049_ipr2_12201
crossref_primary_10_1109_TIP_2019_2898638
crossref_primary_10_1109_TMM_2016_2601028
crossref_primary_10_1109_TBC_2019_2932286
crossref_primary_10_1109_TMM_2017_2685240
crossref_primary_10_1007_s11042_018_6823_6
crossref_primary_10_1109_TCYB_2020_3024627
crossref_primary_10_1016_j_sigpro_2015_08_012
crossref_primary_10_1109_TMM_2018_2807589
crossref_primary_10_1007_s11042_017_5543_7
crossref_primary_10_1109_TMM_2021_3106503
crossref_primary_10_1016_j_jvcir_2014_06_012
crossref_primary_10_1109_TIP_2017_2669840
crossref_primary_10_1049_iet_ipr_2016_1053
crossref_primary_10_1109_TGRS_2015_2478145
crossref_primary_10_1016_j_neucom_2016_09_105
crossref_primary_10_1109_TIP_2016_2545863
crossref_primary_10_1109_JSTSP_2023_3275376
crossref_primary_10_1109_LSP_2016_2617743
crossref_primary_10_1109_TIP_2015_2439035
crossref_primary_10_1109_TMM_2016_2609419
Cites_doi 10.1109/TIP.2003.819861
10.1049/el:20080522
10.1109/TIP.2010.2092435
10.1109/TPAMI.2008.77
10.1109/TIP.2011.2161092
10.1093/acprof:oso/9780198509219.001.0001
10.1016/S0165-1684(98)00124-8
10.1016/j.tins.2004.10.007
10.1109/TIP.2008.924279
10.1109/76.475889
10.1109/TPAMI.2009.27
10.1016/j.image.2005.04.001
10.1007/s11263-009-0272-7
10.1038/nrn2787
10.1109/83.841940
10.1109/MSP.2008.930649
10.1109/TCSVT.2010.2087432
10.1109/ACSSC.2003.1292216
10.1109/TIP.2005.859378
10.1146/annurev.psych.55.090902.142005
10.1109/TMM.2011.2152382
10.1109/TIP.2011.2175935
10.1109/TIP.2011.2109730
10.1109/ICIP.2010.5649265
10.1109/TIP.2007.901820
10.1109/CVPR.2005.38
10.1109/TIP.2005.859389
10.1371/journal.pone.0006421
10.1016/j.jphysparis.2006.10.001
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2012.2214048
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

MEDLINE - Academic
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 54
ExternalDocumentID 2874203461
22910116
26853904
10_1109_TIP_2012_2214048
6272355
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c410t-55eb8da28c8a88f92d5ca0a8c9821a158c455ab7e42f1e98ab6bb9d63f3823a63
IEDL.DBID RIE
ISICitedReferencesCount 224
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312892000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 06:40:49 EDT 2025
Thu Oct 02 05:45:24 EDT 2025
Mon Jun 30 10:19:42 EDT 2025
Wed Feb 19 01:49:01 EST 2025
Mon Jul 21 09:17:30 EDT 2025
Tue Nov 18 20:59:37 EST 2025
Sat Nov 29 03:20:49 EST 2025
Tue Aug 26 16:46:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords internal generative mechanism (IGM)
State of the art
Image processing
Similarity
Image interpretation
Objective analysis
Autoregressive model
Human visual system
Algorithm
Subjective evaluation
Degradation
Image quality
Image segmentation
Residual impurity
Quality control
Database
Metric
Visual information
image decomposition
Damaging
Image evaluation
Signal to noise ratio
image quality assessment (IQA)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-55eb8da28c8a88f92d5ca0a8c9821a158c455ab7e42f1e98ab6bb9d63f3823a63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22910116
PQID 1272440581
PQPubID 85429
PageCount 12
ParticipantIDs proquest_miscellaneous_1283650630
crossref_citationtrail_10_1109_TIP_2012_2214048
crossref_primary_10_1109_TIP_2012_2214048
pascalfrancis_primary_26853904
ieee_primary_6272355
pubmed_primary_22910116
proquest_miscellaneous_1273682820
proquest_journals_1272440581
PublicationCentury 2000
PublicationDate 2013-Jan.
2013-01-00
2013
2013-Jan
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan.
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref33
ref11
ref32
larson (ref10) 2010; 19
ref2
ref1
ref17
ref16
ref19
horita (ref41) 2010
ponomarenko (ref3) 2009; 10
osher (ref29) 2002; 1
ninassi (ref40) 2005
ponomarenko (ref24) 2008
ref23
ref26
ref25
ref42
ref22
ref21
sheikh (ref39) 2004
larson (ref38) 2010
ref28
ref27
ref7
(ref36) 2003
ref9
ref4
ref6
ref5
sternberg (ref20) 2003
shen (ref30) 2008
ponomarenko (ref8) 2007
gao (ref18) 2009; 31
References_xml – year: 2003
  ident: ref36
  publication-title: Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment II
– ident: ref6
  doi: 10.1109/TIP.2003.819861
– volume: 19
  start-page: 11006-1
  year: 2010
  ident: ref10
  article-title: Most apparent distortion: Fullreference image quality assessment and the role of strategy
  publication-title: J Electron Imag
– ident: ref2
  doi: 10.1049/el:20080522
– ident: ref37
  doi: 10.1109/TIP.2010.2092435
– ident: ref33
  doi: 10.1109/TPAMI.2008.77
– ident: ref17
  doi: 10.1109/TIP.2011.2161092
– start-page: 1
  year: 2008
  ident: ref30
  article-title: Intrinsic image decomposition with non-local texture cues
  publication-title: Proc IEEE Conf Comput Vision Pattern Recogn
– year: 2005
  ident: ref40
  publication-title: Subjective Quality AssessmentIVC Database
– ident: ref19
  doi: 10.1093/acprof:oso/9780198509219.001.0001
– ident: ref23
  doi: 10.1016/S0165-1684(98)00124-8
– ident: ref15
  doi: 10.1016/j.tins.2004.10.007
– ident: ref32
  doi: 10.1109/TIP.2008.924279
– ident: ref34
  doi: 10.1109/76.475889
– volume: 31
  start-page: 989
  year: 2009
  ident: ref18
  article-title: Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.27
– ident: ref27
  doi: 10.1016/j.image.2005.04.001
– year: 2004
  ident: ref39
  publication-title: Image and Video Quality Assessment Research at LIVE
– year: 2010
  ident: ref38
  publication-title: Categorical Image Quality (CSIQ) Database
– year: 2003
  ident: ref20
  publication-title: Cognitive Psychology
– ident: ref26
  doi: 10.1007/s11263-009-0272-7
– volume: 10
  start-page: 30
  year: 2009
  ident: ref3
  article-title: TID2008-a database for evaluation of full-reference visual quality assessment metrics
  publication-title: Adv Modern Radioelectron
– ident: ref16
  doi: 10.1038/nrn2787
– start-page: 1
  year: 2007
  ident: ref8
  article-title: On between-coefficient contrast masking of DCT basis functions
  publication-title: Proc 3rd Int Workshop Video Process Quality Metrics Consumer Electron
– ident: ref5
  doi: 10.1109/83.841940
– ident: ref1
  doi: 10.1109/MSP.2008.930649
– year: 2010
  ident: ref41
  publication-title: MICT Image Quality Evaluation Database
– ident: ref28
  doi: 10.1109/TCSVT.2010.2087432
– ident: ref35
  doi: 10.1109/ACSSC.2003.1292216
– year: 2008
  ident: ref24
  publication-title: Tampere image database 2008 TID2008
– ident: ref7
  doi: 10.1109/TIP.2005.859378
– ident: ref31
  doi: 10.1146/annurev.psych.55.090902.142005
– volume: 1
  start-page: 349
  year: 2002
  ident: ref29
  article-title: Image decomposition and restoration using total variation minimization and the <formula formulatype="inline"><tex Notation="TeX">${\rm H}^{-1}$</tex></formula> norm
  publication-title: SIMUL
– ident: ref14
  doi: 10.1109/TMM.2011.2152382
– ident: ref12
  doi: 10.1109/TIP.2011.2175935
– ident: ref11
  doi: 10.1109/TIP.2011.2109730
– ident: ref13
  doi: 10.1109/ICIP.2010.5649265
– ident: ref9
  doi: 10.1109/TIP.2007.901820
– ident: ref25
  doi: 10.1109/CVPR.2005.38
– ident: ref4
  doi: 10.1109/TIP.2005.859389
– ident: ref21
  doi: 10.1371/journal.pone.0006421
– ident: ref42
  doi: 10.1109/TIP.2007.901820
– ident: ref22
  doi: 10.1016/j.jphysparis.2006.10.001
SSID ssj0014516
Score 2.5331695
Snippet Objective image quality assessment (IQA) aims to evaluate image quality consistently with human perception. Most of the existing perceptual IQA metrics cannot...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 43
SubjectTerms Algorithms
Animals
Applied sciences
Artificial Intelligence
Bayes Theorem
Bayesian methods
Databases, Factual
Degradation
Detection, estimation, filtering, equalization, prediction
Distortion
Exact sciences and technology
Human
Human visual system
Humans
image decomposition
Image edge detection
Image processing
Image Processing, Computer-Assisted - methods
Image quality
image quality assessment (IQA)
Information, signal and communications theory
internal generative mechanism (IGM)
Measurement
Models, Theoretical
Perception
PSNR
Signal and communications theory
Signal processing
Signal, noise
Signal-To-Noise Ratio
Similarity
Studies
Telecommunications and information theory
Uncertainty
Visual
Visual Perception
Visualization
Title Perceptual Quality Metric With Internal Generative Mechanism
URI https://ieeexplore.ieee.org/document/6272355
https://www.ncbi.nlm.nih.gov/pubmed/22910116
https://www.proquest.com/docview/1272440581
https://www.proquest.com/docview/1273682820
https://www.proquest.com/docview/1283650630
Volume 22
WOSCitedRecordID wos000312892000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_a4oM-tNr6sVqPFXwR3N4mm80m4IuIRUHLPVS9tyVfSw_qnXTvCv73zmRzawUt-BbIBMLMJDPJfPwAXqIRc95oU3RG2EIIGwqFl2WBbxGruWxKG_t0f_3UnJ2p-VzPduD1WAsTQojJZ-GEhjGW71duQ19lU8kbjvZxF3abRg61WmPEgABnY2SzbooG3f5tSLLU0_OPM8rh4iecUzMZgujjHM0kI5DzG9YowqtQcqTpkT_dAGzxb88zWqDTg__b-33YT55m_nZQjQewE5aHcJC8zjyd6f4Q7t1oSXgEb2ZDpssGlw79NX7mnwl1y-XfFuuLPP0gXuZDv2q6LHGeyocX_feH8OX0_fm7D0VCWCicYOW6qOtglTdcOWWU6jT3tTOlUU4rzgyrlRN1bWwTBO9Y0MpYaa32suoofGhk9Qj2lqtleAI5c5x5wTrmdSdk6S1eBZV2RhgmQ-2rDKZbTrcutR8nFIzLNj5DSt2imFoSU5vElMGrccWPofXGLbRHxPKRLnE7g8kfwhznuUQ3RZcig-OtdNt0ePuW4WKBjqxiGbwYp_HYUSzFLMNqE2kqia9VXt5Goyp0gGWFNI8Hzfm9gaSAT_--8Wdwl0fcDfrrOYa99dUmPIc77nq96K8mqP9zNYn6_wvmb_0k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qFdQHq60fq7Wu4Ivg9pJsNpuALyKWFq_HPZzatyVfiwftXeneCf73TrK5tYIWfAtkAmE-MpPMZH4Ab9CJWaeVLlrNTcG58YXEw7LAu4hRTNTExD7dX8f1ZCLPztR0C94Nf2G897H4zB-GYczlu6Vdh6eykWA1Q_94C25XnDPS_9YacgYBcjbmNqu6qDHw3yQliRrNTqahiosdMhbayQSQPsbQUdIAc37NH0WAlVAeqTvkUNtDW_w79ow-6Gjn_3b_EB6kWDP_0CvHI9jyi13YSXFnnqy624X715oS7sH7aV_rssalfYeNn_lpwN2y-bf56nue3hDP875jdTgucT58IJ53F4_hy9Gn2cfjImEsFJZTsiqqyhvpNJNWailbxVxlNdHSKsmoppW0vKq0qT1nLfVKaiOMUU6UbUggalE-ge3FcuGfQU4to47TljrVckGcwcOgVFZzTYWvXJnBaMPpxqYG5AEH47yJFxGiGhRTE8TUJDFl8HZYcdk337iBdi-wfKBL3M7g4A9hDvNMYKCiCM9gfyPdJplv11BczDGUlTSD18M0Gl7IpuiFX64jTSnwvsrITTSyxBBYlEjztNec3xtICvj87xt_BXePZ6fjZnwy-fwC7rGIwhFefvZhe3W19i_hjv2xmndXB9EKfgE9ev-D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perceptual+Quality+Metric+With+Internal+Generative+Mechanism&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=JINJIAN+WU&rft.au=WEISI+LIN&rft.au=GUANGMING+SHI&rft.au=ANMIN+LIU&rft.date=2013&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1057-7149&rft.volume=22&rft.issue=1-2&rft.spage=43&rft.epage=54&rft_id=info:doi/10.1109%2FTIP.2012.2214048&rft.externalDBID=n%2Fa&rft.externalDocID=26853904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon