Predicting specific wear rate of laser powder bed fusion AlSi10Mg parts at elevated temperatures using machine learning regression algorithm: Unveiling of microstructural morphology analysis
Precisely predicting the Specific Wear Rate (SWR) of AlSi10Mg components produced using Laser Powder Bed Fusion (LPBF) at high temperatures, which is an essential concern in additive manufacturing. This study aims to address the gap in literature by developing accurate predictive models for SWR via...
Uložené v:
| Vydané v: | Journal of materials research and technology Ročník 33; s. 3684 - 3695 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.11.2024
Elsevier |
| Predmet: | |
| ISSN: | 2238-7854 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!