Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period
Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 an...
Saved in:
| Published in: | Chemosphere (Oxford) Vol. 208; pp. 59 - 68 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
01.10.2018
|
| Subjects: | |
| ISSN: | 0045-6535, 1879-1298, 1879-1298 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 and 1.0 μm and 3 concentration gradients each, which covered (10 and 50 mg/L) and exceeded (100 mg/L) its environmental concentrations, respectively. PS microplastics caused dose-dependent adverse effects on Chlorella pyrenoidosa growth from the lag to the earlier logarithmic phases, but exhibited slight difference in the maximal inhibition ratio (approximately 38%) with respect to the two microplastic sizes. In addition to the reduced photosynthetic activity of Chlorella pyrenoidosa, unclear pyrenoids, distorted thylakoids and damaged cell membrane were observed, attributing to the physical damage and oxidative stress caused by microplastics. However, from the end of the logarithmic to the stationary phase, Chlorella pyrenoidosa could reduce the adverse effects of microplastics jointly through cell wall thickening, algae homo-aggregation and algae-microplastics hetero-aggregation, hence triggering an increase of algal photosynthetic activity and its growth, and cell structures turned to normal. Our study confirmed that PS microplastics can impair but then enhance algae growth, which will be helpful in understanding the ecological risks of microplastics.
[Display omitted]
•Effects of PS microplastics on algae were studied over its entire growth period.•PS microplastics caused depression but then stimulation of algal growth.•Physical damage and oxidative stress are involved in depression of algal growth. |
|---|---|
| AbstractList | Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 and 1.0 μm and 3 concentration gradients each, which covered (10 and 50 mg/L) and exceeded (100 mg/L) its environmental concentrations, respectively. PS microplastics caused dose-dependent adverse effects on Chlorella pyrenoidosa growth from the lag to the earlier logarithmic phases, but exhibited slight difference in the maximal inhibition ratio (approximately 38%) with respect to the two microplastic sizes. In addition to the reduced photosynthetic activity of Chlorella pyrenoidosa, unclear pyrenoids, distorted thylakoids and damaged cell membrane were observed, attributing to the physical damage and oxidative stress caused by microplastics. However, from the end of the logarithmic to the stationary phase, Chlorella pyrenoidosa could reduce the adverse effects of microplastics jointly through cell wall thickening, algae homo-aggregation and algae-microplastics hetero-aggregation, hence triggering an increase of algal photosynthetic activity and its growth, and cell structures turned to normal. Our study confirmed that PS microplastics can impair but then enhance algae growth, which will be helpful in understanding the ecological risks of microplastics.
[Display omitted]
•Effects of PS microplastics on algae were studied over its entire growth period.•PS microplastics caused depression but then stimulation of algal growth.•Physical damage and oxidative stress are involved in depression of algal growth. Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 and 1.0 μm and 3 concentration gradients each, which covered (10 and 50 mg/L) and exceeded (100 mg/L) its environmental concentrations, respectively. PS microplastics caused dose-dependent adverse effects on Chlorella pyrenoidosa growth from the lag to the earlier logarithmic phases, but exhibited slight difference in the maximal inhibition ratio (approximately 38%) with respect to the two microplastic sizes. In addition to the reduced photosynthetic activity of Chlorella pyrenoidosa, unclear pyrenoids, distorted thylakoids and damaged cell membrane were observed, attributing to the physical damage and oxidative stress caused by microplastics. However, from the end of the logarithmic to the stationary phase, Chlorella pyrenoidosa could reduce the adverse effects of microplastics jointly through cell wall thickening, algae homo-aggregation and algae-microplastics hetero-aggregation, hence triggering an increase of algal photosynthetic activity and its growth, and cell structures turned to normal. Our study confirmed that PS microplastics can impair but then enhance algae growth, which will be helpful in understanding the ecological risks of microplastics. Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 and 1.0 μm and 3 concentration gradients each, which covered (10 and 50 mg/L) and exceeded (100 mg/L) its environmental concentrations, respectively. PS microplastics caused dose-dependent adverse effects on Chlorella pyrenoidosa growth from the lag to the earlier logarithmic phases, but exhibited slight difference in the maximal inhibition ratio (approximately 38%) with respect to the two microplastic sizes. In addition to the reduced photosynthetic activity of Chlorella pyrenoidosa, unclear pyrenoids, distorted thylakoids and damaged cell membrane were observed, attributing to the physical damage and oxidative stress caused by microplastics. However, from the end of the logarithmic to the stationary phase, Chlorella pyrenoidosa could reduce the adverse effects of microplastics jointly through cell wall thickening, algae homo-aggregation and algae-microplastics hetero-aggregation, hence triggering an increase of algal photosynthetic activity and its growth, and cell structures turned to normal. Our study confirmed that PS microplastics can impair but then enhance algae growth, which will be helpful in understanding the ecological risks of microplastics.Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 and 1.0 μm and 3 concentration gradients each, which covered (10 and 50 mg/L) and exceeded (100 mg/L) its environmental concentrations, respectively. PS microplastics caused dose-dependent adverse effects on Chlorella pyrenoidosa growth from the lag to the earlier logarithmic phases, but exhibited slight difference in the maximal inhibition ratio (approximately 38%) with respect to the two microplastic sizes. In addition to the reduced photosynthetic activity of Chlorella pyrenoidosa, unclear pyrenoids, distorted thylakoids and damaged cell membrane were observed, attributing to the physical damage and oxidative stress caused by microplastics. However, from the end of the logarithmic to the stationary phase, Chlorella pyrenoidosa could reduce the adverse effects of microplastics jointly through cell wall thickening, algae homo-aggregation and algae-microplastics hetero-aggregation, hence triggering an increase of algal photosynthetic activity and its growth, and cell structures turned to normal. Our study confirmed that PS microplastics can impair but then enhance algae growth, which will be helpful in understanding the ecological risks of microplastics. |
| Author | Ai, Hainan Chen, Yi Gu, Weikang Zhang, Zhenyu Li, Hong Zeng, Peng Mao, Yufeng Li, Wei He, Qiang Kang, Li |
| Author_xml | – sequence: 1 givenname: Yufeng surname: Mao fullname: Mao, Yufeng organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China – sequence: 2 givenname: Hainan surname: Ai fullname: Ai, Hainan organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China – sequence: 3 givenname: Yi orcidid: 0000-0002-8298-0350 surname: Chen fullname: Chen, Yi organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China – sequence: 4 givenname: Zhenyu surname: Zhang fullname: Zhang, Zhenyu organization: Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 5 givenname: Peng surname: Zeng fullname: Zeng, Peng organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China – sequence: 6 givenname: Li surname: Kang fullname: Kang, Li organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China – sequence: 7 givenname: Wei surname: Li fullname: Li, Wei organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China – sequence: 8 givenname: Weikang surname: Gu fullname: Gu, Weikang organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China – sequence: 9 givenname: Qiang surname: He fullname: He, Qiang email: 20150188@cqu.edu.cn organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China – sequence: 10 givenname: Hong surname: Li fullname: Li, Hong email: hongli@cqu.edu.cn organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29860145$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1v3CAURVGVqJmk_QsV3XVj92EbA91U1ahfUqRmkSwjRPBzh6kNLjCJ5t-X0SRS1U2zYsG5F3HPOTnxwSMhbxnUDFj_flvbDc4hLRuMWDfAZA28ZgJekBWTQlWsUfKErAA6XvW85WfkPKUtQAlz9ZKcleseWMdX5PZqs89hmYz_lYOnEdMSfEKaA13CtE95H9EjnZ2NByplZ9MHeoUxLWizu0c6xjBT4yn67CLSnzE85A1dMLowvCKno5kSvn48L8jNl8_X62_V5Y-v39efLivbMchVZ5s7Jq0UAxdSSBwZoGICuxHbvgMrlcCBg1BDx1oDo-UC-rZRppM9G5VpL8i7Y-8Sw-8dpqxnlyxO5VsYdkk3jPWKqR6a_6PQKdUKzg_om0d0dzfjoJfoZhP3-mm9Anw8AmWclCKO2rpssgs-R-MmzUAffOmt_suXPvjSwHXxVRrUPw1Pjzwnuz5msSx77zDqZB16i0PxYLMegntGyx8jOLiY |
| CitedBy_id | crossref_primary_10_3390_toxics11050469 crossref_primary_10_1007_s12210_022_01104_6 crossref_primary_10_1016_j_jenvman_2023_118246 crossref_primary_10_3390_biology12111430 crossref_primary_10_1016_j_chemosphere_2021_132943 crossref_primary_10_1016_j_scitotenv_2020_138180 crossref_primary_10_1016_j_rhisph_2022_100542 crossref_primary_10_1016_j_envpol_2024_123960 crossref_primary_10_3390_w16101360 crossref_primary_10_3390_nano11020482 crossref_primary_10_1016_j_scitotenv_2022_155192 crossref_primary_10_1016_j_jhazmat_2025_137898 crossref_primary_10_1016_j_ecoenv_2023_114564 crossref_primary_10_3390_jmse9040433 crossref_primary_10_4491_KSEE_2022_44_11_453 crossref_primary_10_1007_s11356_022_20107_2 crossref_primary_10_3390_w14152422 crossref_primary_10_1007_s11356_025_36161_5 crossref_primary_10_1016_j_envpol_2024_123850 crossref_primary_10_1016_j_jhazmat_2024_135062 crossref_primary_10_1016_j_algal_2023_103059 crossref_primary_10_1016_j_aquatox_2022_106097 crossref_primary_10_1016_j_aquatox_2023_106595 crossref_primary_10_1016_j_jhazmat_2023_132891 crossref_primary_10_1177_00368504221132151 crossref_primary_10_1007_s11270_021_05267_0 crossref_primary_10_1007_s44169_023_00047_9 crossref_primary_10_1016_j_envpol_2019_113451 crossref_primary_10_1016_j_jhazmat_2020_123092 crossref_primary_10_1016_j_marpolbul_2023_114584 crossref_primary_10_1016_j_chemosphere_2022_135034 crossref_primary_10_1016_j_scitotenv_2021_146094 crossref_primary_10_1016_j_scitotenv_2024_175227 crossref_primary_10_3390_environments11080165 crossref_primary_10_1016_j_scitotenv_2023_168414 crossref_primary_10_1016_j_aquatox_2020_105650 crossref_primary_10_1016_j_envpol_2024_123863 crossref_primary_10_1016_j_envpol_2025_126010 crossref_primary_10_1007_s11356_019_04865_0 crossref_primary_10_1007_s11356_024_33961_z crossref_primary_10_1007_s10452_022_09966_6 crossref_primary_10_3390_ijerph16234639 crossref_primary_10_1016_j_ecoenv_2020_111000 crossref_primary_10_1016_j_envpol_2019_04_142 crossref_primary_10_1016_j_scitotenv_2019_135558 crossref_primary_10_1007_s44169_023_00038_w crossref_primary_10_1016_j_algal_2022_102835 crossref_primary_10_1016_j_jhazmat_2025_138645 crossref_primary_10_1016_j_jhazmat_2025_138766 crossref_primary_10_1016_j_jhazmat_2019_121224 crossref_primary_10_1016_j_scitotenv_2023_164298 crossref_primary_10_1016_j_rsma_2025_104244 crossref_primary_10_1016_j_jhazmat_2021_126843 crossref_primary_10_1016_j_ecoenv_2023_115673 crossref_primary_10_1080_10590501_2019_1699379 crossref_primary_10_1016_j_scitotenv_2021_150252 crossref_primary_10_1016_j_aquatox_2021_105840 crossref_primary_10_1016_j_envpol_2023_121156 crossref_primary_10_1016_j_jclepro_2024_142153 crossref_primary_10_1016_j_watres_2024_121706 crossref_primary_10_1016_j_jhazmat_2025_138650 crossref_primary_10_1016_j_chemosphere_2024_143110 crossref_primary_10_1002_wer_70032 crossref_primary_10_1016_j_jenvman_2025_124286 crossref_primary_10_1016_j_scitotenv_2020_142572 crossref_primary_10_1016_j_watres_2020_116476 crossref_primary_10_1016_j_jhazmat_2023_132994 crossref_primary_10_1016_j_envres_2024_120046 crossref_primary_10_1016_j_resconrec_2021_105961 crossref_primary_10_1016_j_envpol_2019_113475 crossref_primary_10_1016_j_envpol_2021_117413 crossref_primary_10_1016_j_marpolbul_2025_118282 crossref_primary_10_1007_s10311_021_01370_0 crossref_primary_10_1007_s11356_023_29999_0 crossref_primary_10_1016_j_jece_2023_111287 crossref_primary_10_1007_s11356_022_22690_w crossref_primary_10_1016_j_jconhyd_2024_104399 crossref_primary_10_1016_j_scitotenv_2023_168116 crossref_primary_10_1016_j_jwpe_2023_104599 crossref_primary_10_1016_j_envpol_2023_123127 crossref_primary_10_1016_j_chemosphere_2024_143120 crossref_primary_10_1016_j_jhazmat_2024_135273 crossref_primary_10_1016_j_ecoenv_2019_01_113 crossref_primary_10_1016_j_envpol_2024_124604 crossref_primary_10_1016_j_envres_2025_120750 crossref_primary_10_3390_w15091744 crossref_primary_10_1016_j_scitotenv_2023_166057 crossref_primary_10_1016_j_scitotenv_2023_166298 crossref_primary_10_1080_21655979_2024_2314888 crossref_primary_10_3390_polym14204299 crossref_primary_10_1016_j_envpol_2019_113149 crossref_primary_10_1016_j_aquatox_2021_105747 crossref_primary_10_1016_j_watres_2024_121841 crossref_primary_10_3390_toxics10020076 crossref_primary_10_1016_j_algal_2023_103378 crossref_primary_10_1016_j_envpol_2025_126586 crossref_primary_10_1016_j_envres_2022_113370 crossref_primary_10_3390_molecules28093958 crossref_primary_10_1016_j_scitotenv_2022_158560 crossref_primary_10_1016_j_chemosphere_2019_125485 crossref_primary_10_3389_ftox_2023_1135081 crossref_primary_10_1007_s11356_021_16286_z crossref_primary_10_1016_j_scitotenv_2023_167017 crossref_primary_10_1016_j_jhazmat_2022_130137 crossref_primary_10_1016_j_scitotenv_2021_151638 crossref_primary_10_1016_j_ecoenv_2020_111153 crossref_primary_10_1039_D4EN01223B crossref_primary_10_1007_s11783_021_1436_0 crossref_primary_10_1016_j_marpolbul_2023_114755 crossref_primary_10_1080_10643389_2025_2502372 crossref_primary_10_1016_j_scitotenv_2024_177200 crossref_primary_10_1039_D2EN00123C crossref_primary_10_1016_j_envpol_2023_123022 crossref_primary_10_1016_j_ijsrc_2025_04_003 crossref_primary_10_1016_j_scitotenv_2020_143633 crossref_primary_10_1016_j_chemosphere_2022_137225 crossref_primary_10_1038_s41581_025_00971_0 crossref_primary_10_1016_j_chemosphere_2020_129030 crossref_primary_10_1016_j_scitotenv_2022_158214 crossref_primary_10_1016_j_scitotenv_2022_158334 crossref_primary_10_1007_s11356_021_12983_x crossref_primary_10_1016_j_chemosphere_2022_135162 crossref_primary_10_1016_j_envexpbot_2024_105666 crossref_primary_10_1016_j_jhazmat_2023_131618 crossref_primary_10_1016_j_marpolbul_2020_111278 crossref_primary_10_1007_s11270_021_05081_8 crossref_primary_10_1016_j_scitotenv_2020_140349 crossref_primary_10_1016_j_aquatox_2023_106771 crossref_primary_10_1016_j_envpol_2020_115098 crossref_primary_10_3390_w17050655 crossref_primary_10_1016_j_aquatox_2024_106838 crossref_primary_10_1016_j_scitotenv_2023_166140 crossref_primary_10_1007_s10806_019_09785_0 crossref_primary_10_1016_j_envpol_2025_126317 crossref_primary_10_1016_j_marenvres_2025_106965 crossref_primary_10_1016_j_marpolbul_2020_111624 crossref_primary_10_1038_s41598_022_22906_6 crossref_primary_10_1016_j_jhazmat_2021_128094 crossref_primary_10_1016_j_microc_2023_109036 crossref_primary_10_1016_j_envpol_2022_119626 crossref_primary_10_1016_j_envpol_2019_113628 crossref_primary_10_1016_j_marenvres_2023_106281 crossref_primary_10_1016_j_scitotenv_2023_167864 crossref_primary_10_1016_j_envpol_2024_124649 crossref_primary_10_1016_j_scitotenv_2020_137376 crossref_primary_10_1016_j_ibiod_2023_105581 crossref_primary_10_1016_j_scitotenv_2024_173218 crossref_primary_10_1016_j_scitotenv_2023_162291 crossref_primary_10_1016_j_psep_2023_12_058 crossref_primary_10_1007_s11356_023_30910_0 crossref_primary_10_1016_j_chemosphere_2024_142641 crossref_primary_10_1016_j_envpol_2023_121092 crossref_primary_10_1016_j_chemosphere_2019_03_163 crossref_primary_10_1088_1755_1315_1013_1_012014 crossref_primary_10_1002_jat_4034 crossref_primary_10_1016_j_jtbi_2024_111733 crossref_primary_10_1007_s44169_023_00031_3 crossref_primary_10_1038_s41598_025_08674_z crossref_primary_10_1016_j_scitotenv_2022_158763 crossref_primary_10_1007_s00128_022_03659_4 crossref_primary_10_1016_j_envpol_2020_114985 crossref_primary_10_1016_j_scitotenv_2022_159614 crossref_primary_10_3389_fmicb_2021_773226 crossref_primary_10_1016_j_chemosphere_2024_143983 crossref_primary_10_1016_j_envint_2022_107662 crossref_primary_10_1016_j_watres_2022_119313 crossref_primary_10_1007_s11270_023_06642_9 crossref_primary_10_3389_fmars_2022_851281 crossref_primary_10_1021_acs_est_5c02570 crossref_primary_10_1016_j_envpol_2024_123349 crossref_primary_10_1016_j_envpol_2024_123347 crossref_primary_10_1016_j_marpolbul_2020_111403 crossref_primary_10_1016_j_scitotenv_2022_160603 crossref_primary_10_1016_j_chemosphere_2022_134556 crossref_primary_10_1016_j_etap_2019_01_006 crossref_primary_10_1002_ece3_70041 crossref_primary_10_1016_j_envpol_2019_113760 crossref_primary_10_1016_j_heliyon_2024_e32881 crossref_primary_10_1007_s10661_025_13737_9 crossref_primary_10_1016_j_watres_2023_119717 crossref_primary_10_1007_s11270_020_04845_y crossref_primary_10_1080_26395940_2022_2128884 crossref_primary_10_1016_j_scitotenv_2021_148337 crossref_primary_10_1080_10889868_2025_2544600 crossref_primary_10_1016_j_scitotenv_2024_174660 crossref_primary_10_3390_su14020828 crossref_primary_10_1016_j_marenvres_2024_106793 crossref_primary_10_1016_j_envpol_2021_118101 crossref_primary_10_1007_s13762_024_05846_8 crossref_primary_10_1016_j_cej_2025_162557 crossref_primary_10_1016_j_jenvman_2024_123055 crossref_primary_10_1016_j_jhazmat_2022_129692 crossref_primary_10_1007_s13762_019_02582_2 crossref_primary_10_1016_j_chemosphere_2021_131814 crossref_primary_10_1016_j_marenvres_2024_106645 crossref_primary_10_1016_j_scitotenv_2022_155036 crossref_primary_10_1016_j_jclepro_2020_125240 crossref_primary_10_1016_j_marpolbul_2020_111425 crossref_primary_10_1016_j_scitotenv_2021_147535 crossref_primary_10_1016_j_scitotenv_2020_139991 crossref_primary_10_35208_ert_1499952 crossref_primary_10_1016_j_jhazmat_2024_136648 crossref_primary_10_1007_s10311_024_01699_2 crossref_primary_10_1007_s11356_019_05826_3 crossref_primary_10_1016_j_ecoenv_2020_110456 crossref_primary_10_1016_j_scitotenv_2020_138547 crossref_primary_10_1016_j_watres_2025_123476 crossref_primary_10_1016_j_chemosphere_2022_135341 crossref_primary_10_1016_j_chemosphere_2020_126059 crossref_primary_10_3390_toxics11050414 crossref_primary_10_1016_j_envres_2023_116422 crossref_primary_10_1016_j_watres_2022_118154 crossref_primary_10_1016_j_envpol_2020_115905 crossref_primary_10_1016_j_envpol_2025_126987 crossref_primary_10_1016_j_ecoenv_2024_115996 crossref_primary_10_1039_D4EN00300D crossref_primary_10_1016_j_watres_2023_120778 crossref_primary_10_1088_1748_9326_ac3bfd crossref_primary_10_1016_j_envpol_2021_118042 crossref_primary_10_1016_j_cbpc_2021_109144 crossref_primary_10_1016_j_ecoenv_2021_111894 crossref_primary_10_1016_j_psep_2022_11_077 crossref_primary_10_1016_j_scitotenv_2023_164388 crossref_primary_10_1007_s11356_025_35981_9 crossref_primary_10_1016_j_scitotenv_2021_147670 crossref_primary_10_1016_j_envpol_2020_115911 crossref_primary_10_1007_s10653_024_01862_2 crossref_primary_10_1016_j_trac_2018_10_025 crossref_primary_10_1016_j_watres_2025_124104 crossref_primary_10_1016_j_jhazmat_2020_124835 crossref_primary_10_1016_j_envpol_2024_124237 crossref_primary_10_1016_j_scitotenv_2022_153074 crossref_primary_10_1016_j_scitotenv_2020_140638 crossref_primary_10_1016_j_envpol_2024_124478 crossref_primary_10_1016_j_scitotenv_2020_141603 crossref_primary_10_1016_j_scitotenv_2023_169707 crossref_primary_10_3389_fenvs_2020_551075 crossref_primary_10_1016_j_scitotenv_2023_164017 crossref_primary_10_1016_j_aquatox_2019_105319 crossref_primary_10_1016_j_cbpc_2021_109056 crossref_primary_10_1016_j_envpol_2022_120987 crossref_primary_10_1016_j_scitotenv_2022_159943 crossref_primary_10_3390_ma17153701 crossref_primary_10_1016_j_jhazmat_2022_130523 crossref_primary_10_1016_j_heliyon_2024_e30021 crossref_primary_10_1016_j_envexpbot_2021_104510 crossref_primary_10_1016_j_envpol_2025_125996 crossref_primary_10_1016_j_scitotenv_2019_136050 crossref_primary_10_1016_j_jhazmat_2020_124967 crossref_primary_10_1016_j_scitotenv_2022_153063 crossref_primary_10_1016_j_chemosphere_2024_142220 crossref_primary_10_1016_j_jhazmat_2024_134116 crossref_primary_10_1016_j_ecoenv_2020_110484 crossref_primary_10_1016_j_ecoenv_2020_111575 crossref_primary_10_1016_j_scitotenv_2023_163398 crossref_primary_10_1016_j_jhazmat_2021_126084 crossref_primary_10_1016_j_jhazmat_2022_128323 crossref_primary_10_1016_j_jhazmat_2019_121376 crossref_primary_10_1016_j_jhazmat_2022_128561 crossref_primary_10_1016_j_jhazmat_2021_127174 crossref_primary_10_1016_j_jhazmat_2023_130814 crossref_primary_10_1016_j_scitotenv_2022_158906 crossref_primary_10_1016_j_scitotenv_2024_173864 crossref_primary_10_1007_s11356_020_08104_9 crossref_primary_10_1177_0040517521991244 crossref_primary_10_1016_j_scitotenv_2024_171563 crossref_primary_10_1016_j_gr_2021_07_029 crossref_primary_10_1016_j_scitotenv_2024_170591 crossref_primary_10_1007_s10532_025_10187_5 crossref_primary_10_1016_j_chemosphere_2021_133240 crossref_primary_10_1007_s12649_025_03062_0 crossref_primary_10_1016_j_envpol_2022_119108 crossref_primary_10_1016_j_envpol_2025_126829 crossref_primary_10_1016_j_aquatox_2023_106802 crossref_primary_10_1016_j_jhazmat_2022_129879 crossref_primary_10_1016_j_fbio_2024_104157 crossref_primary_10_1016_j_jhazmat_2022_129515 crossref_primary_10_1016_j_envpol_2020_115429 crossref_primary_10_1016_j_plaphy_2023_108065 crossref_primary_10_1007_s11356_023_28314_1 crossref_primary_10_1016_j_envpol_2024_124028 crossref_primary_10_1016_j_scitotenv_2021_146534 crossref_primary_10_1007_s11356_024_35741_1 crossref_primary_10_1134_S1995082924020093 crossref_primary_10_1016_j_scitotenv_2023_164985 crossref_primary_10_1016_j_jhazmat_2019_04_039 crossref_primary_10_1016_j_watres_2024_121121 crossref_primary_10_1007_s11756_024_01839_7 crossref_primary_10_1007_s11356_021_15300_8 crossref_primary_10_1016_j_scitotenv_2020_138616 crossref_primary_10_1016_j_jhazmat_2021_126057 crossref_primary_10_3389_fmars_2021_779321 crossref_primary_10_3390_w13121713 crossref_primary_10_1016_j_watres_2025_123730 crossref_primary_10_1007_s00203_021_02697_6 crossref_primary_10_1016_j_jhazmat_2024_135890 crossref_primary_10_1016_j_aquatox_2025_107242 crossref_primary_10_1007_s10661_025_13636_z crossref_primary_10_1016_j_watres_2021_117054 crossref_primary_10_1016_j_envpol_2024_125246 crossref_primary_10_1016_j_hal_2025_102914 crossref_primary_10_1016_j_envpol_2022_120546 crossref_primary_10_1016_j_marchem_2024_104402 crossref_primary_10_1002_etc_5893 crossref_primary_10_1016_j_psep_2025_107532 crossref_primary_10_1016_j_jhazmat_2023_133279 crossref_primary_10_1007_s11270_022_05531_x crossref_primary_10_1016_j_ecoenv_2021_112496 crossref_primary_10_3390_w13010056 crossref_primary_10_1016_j_envpol_2020_114593 crossref_primary_10_1016_j_trac_2023_117477 crossref_primary_10_1016_j_ecoenv_2025_117813 crossref_primary_10_1007_s11356_020_10388_w crossref_primary_10_1016_j_jclepro_2024_142834 crossref_primary_10_1016_j_envres_2021_112287 crossref_primary_10_1016_j_marpolbul_2025_117758 crossref_primary_10_1007_s11356_020_07679_7 crossref_primary_10_1016_j_envpol_2020_115576 crossref_primary_10_1016_j_chemosphere_2021_133333 crossref_primary_10_1016_j_envpol_2022_119454 crossref_primary_10_1016_j_cbpc_2022_109426 crossref_primary_10_1016_j_chemosphere_2023_139476 crossref_primary_10_1007_s10653_023_01566_z crossref_primary_10_1016_j_envpol_2019_01_114 crossref_primary_10_1016_j_jwpe_2025_108714 crossref_primary_10_1016_j_jhazmat_2025_138260 crossref_primary_10_3389_fmicb_2021_666100 crossref_primary_10_1007_s10646_022_02536_4 crossref_primary_10_1007_s11356_021_17198_8 crossref_primary_10_1016_j_jhazmat_2021_127488 crossref_primary_10_1016_j_aquatox_2021_106049 crossref_primary_10_3390_w17020201 crossref_primary_10_1016_j_jhazmat_2020_124536 crossref_primary_10_1016_j_scitotenv_2021_147934 crossref_primary_10_1016_j_chemosphere_2022_134530 crossref_primary_10_1016_j_trac_2024_117854 crossref_primary_10_1016_j_trac_2024_117611 crossref_primary_10_1016_j_envpol_2023_121611 crossref_primary_10_1016_j_scitotenv_2023_164312 crossref_primary_10_1016_j_envpol_2023_122702 crossref_primary_10_1016_j_envres_2021_112179 crossref_primary_10_1016_j_scitotenv_2025_180366 crossref_primary_10_3390_w16162270 crossref_primary_10_1016_j_watres_2023_119815 crossref_primary_10_1016_j_scitotenv_2020_136767 crossref_primary_10_1016_j_watres_2022_118430 crossref_primary_10_1016_j_scitotenv_2022_154571 crossref_primary_10_1155_2022_1234078 crossref_primary_10_1186_s12951_024_02777_x crossref_primary_10_1007_s10311_023_01564_8 crossref_primary_10_3390_nano12224077 crossref_primary_10_1016_j_jenvman_2023_118982 crossref_primary_10_1039_D4EN00559G crossref_primary_10_1016_j_envpol_2020_114425 crossref_primary_10_1016_j_chemosphere_2024_141644 crossref_primary_10_3390_ijms23073583 crossref_primary_10_1007_s11356_022_21393_6 crossref_primary_10_1016_j_chemosphere_2024_142854 crossref_primary_10_1016_j_scitotenv_2022_153350 crossref_primary_10_1016_j_envpol_2022_120354 crossref_primary_10_3103_S0096392521040076 crossref_primary_10_1016_j_jhazmat_2024_134888 crossref_primary_10_1016_j_envpol_2019_113604 crossref_primary_10_3390_w12092650 crossref_primary_10_1016_j_scitotenv_2019_02_132 crossref_primary_10_3390_toxics9020041 crossref_primary_10_1007_s11783_021_1441_3 crossref_primary_10_1016_j_jhazmat_2024_133438 crossref_primary_10_1016_j_jenvman_2023_118971 crossref_primary_10_1016_j_marpolbul_2021_113197 crossref_primary_10_1016_j_envpol_2024_124084 crossref_primary_10_1016_j_jhazmat_2020_124685 crossref_primary_10_1016_j_envpol_2020_114559 crossref_primary_10_3390_nano15020146 crossref_primary_10_3389_fpls_2022_1100291 crossref_primary_10_1016_j_scitotenv_2023_165727 crossref_primary_10_1016_j_envpol_2023_121628 crossref_primary_10_1016_j_marpolbul_2022_113809 crossref_primary_10_1016_j_aquatox_2022_106234 crossref_primary_10_1007_s10661_023_11701_z crossref_primary_10_1016_j_watres_2024_123002 crossref_primary_10_3390_microorganisms10122400 crossref_primary_10_1016_j_jhazmat_2025_139671 crossref_primary_10_1016_j_ecoenv_2025_117685 crossref_primary_10_1007_s10452_021_09834_9 crossref_primary_10_1016_j_ecoenv_2023_115702 crossref_primary_10_1016_j_isci_2023_106833 crossref_primary_10_1016_j_scitotenv_2019_135979 crossref_primary_10_1016_j_envint_2021_106504 crossref_primary_10_1016_j_scitotenv_2021_146919 crossref_primary_10_1016_j_jclepro_2019_02_180 crossref_primary_10_1016_j_chemosphere_2023_138776 crossref_primary_10_3390_d16010070 crossref_primary_10_1016_j_jhazmat_2021_126591 crossref_primary_10_1016_j_scitotenv_2020_136947 crossref_primary_10_1016_j_apsoil_2022_104680 crossref_primary_10_1016_j_jhazmat_2020_123496 crossref_primary_10_1016_j_marpolbul_2019_110525 crossref_primary_10_1016_j_marenvres_2025_107007 crossref_primary_10_1016_j_porgcoat_2024_108824 crossref_primary_10_1016_j_scitotenv_2023_161869 crossref_primary_10_1016_j_marenvres_2025_107005 crossref_primary_10_1016_j_scitotenv_2024_178003 crossref_primary_10_1007_s10452_025_10199_6 crossref_primary_10_1016_j_scitotenv_2022_161375 crossref_primary_10_1007_s11270_023_06062_9 crossref_primary_10_1007_s11356_021_17545_9 crossref_primary_10_1021_acs_jpcb_5c00416 crossref_primary_10_1016_j_ecoenv_2022_114102 crossref_primary_10_1016_j_scitotenv_2025_179868 crossref_primary_10_1016_j_aquatox_2023_106638 crossref_primary_10_1016_j_envpol_2020_115033 crossref_primary_10_1016_j_jhazmat_2021_125374 crossref_primary_10_1016_j_envpol_2021_117950 crossref_primary_10_1016_j_jhazmat_2020_124232 crossref_primary_10_1016_j_scitotenv_2024_177127 crossref_primary_10_1016_j_scitotenv_2019_133650 crossref_primary_10_1016_j_scitotenv_2024_176392 crossref_primary_10_1002_smll_202005834 crossref_primary_10_1016_j_scitotenv_2023_162950 crossref_primary_10_1016_j_jhazmat_2019_121620 crossref_primary_10_1016_j_chemosphere_2020_126914 crossref_primary_10_1016_j_scitotenv_2022_153828 crossref_primary_10_1111_brv_13164 crossref_primary_10_1016_j_marpolbul_2020_111074 crossref_primary_10_3390_separations12040082 crossref_primary_10_1016_j_scitotenv_2024_176164 crossref_primary_10_1016_j_envpol_2019_04_093 crossref_primary_10_1016_j_scitotenv_2020_143265 crossref_primary_10_1016_j_ecoenv_2024_117076 crossref_primary_10_1016_j_envpol_2020_116147 crossref_primary_10_1016_j_aquatox_2023_106609 crossref_primary_10_1016_j_scitotenv_2021_152564 crossref_primary_10_1016_j_scitotenv_2023_169044 crossref_primary_10_1002_appl_202200124 crossref_primary_10_1016_j_marpolbul_2022_114535 crossref_primary_10_1016_j_jwpe_2021_102291 crossref_primary_10_1016_j_scitotenv_2021_152562 crossref_primary_10_1016_j_envres_2021_111243 crossref_primary_10_1016_j_jhazmat_2021_127529 crossref_primary_10_1016_j_algal_2021_102289 crossref_primary_10_1016_j_scitotenv_2023_162414 crossref_primary_10_1016_j_scitotenv_2023_163984 crossref_primary_10_1007_s00425_023_04069_4 crossref_primary_10_1016_j_aquatox_2025_107257 crossref_primary_10_1007_s11783_024_1809_2 crossref_primary_10_1016_j_aquatox_2023_106725 crossref_primary_10_1016_j_rsma_2025_104025 crossref_primary_10_1016_j_jhazmat_2025_137344 crossref_primary_10_1016_j_scitotenv_2023_163608 crossref_primary_10_1016_j_chemosphere_2023_140760 crossref_primary_10_1016_j_watres_2020_116370 crossref_primary_10_1016_j_envint_2021_106842 crossref_primary_10_1016_j_algal_2021_102296 crossref_primary_10_1051_bioconf_202410400024 crossref_primary_10_1039_D0EN00373E crossref_primary_10_1016_j_envpol_2020_114268 crossref_primary_10_1016_j_envres_2022_113777 crossref_primary_10_1080_1354750X_2020_1863470 crossref_primary_10_1016_j_envpol_2020_114385 crossref_primary_10_3390_toxics12040254 crossref_primary_10_1016_j_chemosphere_2022_137182 crossref_primary_10_3390_toxins13040293 crossref_primary_10_1016_j_marpolbul_2021_112379 crossref_primary_10_1039_D2EN00204C crossref_primary_10_1016_j_ecoenv_2023_114834 crossref_primary_10_3390_polym14122450 crossref_primary_10_1016_j_envpol_2025_126178 crossref_primary_10_1016_j_scitotenv_2024_176074 crossref_primary_10_1016_j_jhazmat_2024_133952 crossref_primary_10_1016_j_gr_2021_07_010 crossref_primary_10_1016_j_scitotenv_2023_163842 crossref_primary_10_1016_j_envres_2021_112598 crossref_primary_10_1016_j_resconrec_2022_106503 crossref_primary_10_1016_j_envpol_2021_117626 crossref_primary_10_1080_26896583_2024_2370715 crossref_primary_10_1016_j_envpol_2020_114274 crossref_primary_10_1016_j_jes_2020_06_033 crossref_primary_10_1007_s11356_022_23278_0 crossref_primary_10_1007_s11270_024_07684_3 crossref_primary_10_3390_nano11102471 crossref_primary_10_1002_lno_12701 crossref_primary_10_1016_j_chemosphere_2021_130017 crossref_primary_10_1016_j_chemosphere_2023_140541 crossref_primary_10_1016_j_scitotenv_2020_139083 crossref_primary_10_1002_wer_11070 crossref_primary_10_3389_fenvs_2020_00131 crossref_primary_10_1016_j_scitotenv_2021_149180 crossref_primary_10_1016_j_chemosphere_2020_126705 crossref_primary_10_3389_fenvs_2022_928247 |
| Cites_doi | 10.1016/j.aquatox.2014.05.014 10.1016/j.scitotenv.2018.03.176 10.1002/etc.445 10.1073/pnas.1606615113 10.1016/j.envpol.2016.06.036 10.1016/j.scitotenv.2018.04.257 10.1021/acs.est.5b00492 10.1016/j.chemosphere.2015.06.020 10.1016/j.pestbp.2007.11.009 10.1021/acs.est.7b05559 10.1021/acs.est.7b04512 10.1016/j.envpol.2016.06.074 10.1016/j.ecoenv.2015.07.011 10.1021/es5036317 10.1126/science.1260352 10.1021/es503001d 10.1021/acs.est.7b02219 10.1021/nl0722929 10.1021/acs.est.6b01187 10.1016/j.scitotenv.2016.03.164 10.1016/j.envpol.2016.05.006 10.1016/j.watres.2015.02.012 10.1016/j.envpol.2017.01.015 10.1021/es201811s 10.1016/j.chemosphere.2016.12.074 10.1021/jp1054759 10.1016/j.aquatox.2013.01.018 10.1016/j.aquatox.2017.06.008 10.1016/j.aquatox.2008.11.014 10.1038/s41559-017-0116 10.1016/j.chemosphere.2017.02.024 10.1016/j.aquatox.2010.05.018 10.1016/j.envpol.2015.04.023 10.1021/acs.est.5b05905 10.1021/sc400103x 10.1021/acs.est.6b01441 10.1016/j.scitotenv.2017.01.190 10.1021/acs.est.7b03331 10.1016/j.envpol.2018.01.024 10.1016/j.envint.2009.10.010 10.1016/j.cej.2012.12.015 10.1016/j.envpol.2017.01.025 10.1029/2006WR005613 10.1016/j.envpol.2014.02.006 10.1016/j.hal.2014.05.015 10.1126/science.aad6359 10.1016/j.aquatox.2015.12.002 10.1016/j.envpol.2016.11.005 10.1016/j.marenvres.2009.05.002 10.1016/j.envpol.2017.05.047 10.1016/j.marpolbul.2015.04.007 10.1021/acs.est.7b06615 10.1016/j.ecolind.2016.12.038 10.1021/es303303g 10.1021/acs.est.6b05812 10.1021/acs.est.7b01541 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.chemosphere.2018.05.170 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Ecology |
| EISSN | 1879-1298 |
| EndPage | 68 |
| ExternalDocumentID | 29860145 10_1016_j_chemosphere_2018_05_170 S0045653518310270 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c410t-4c2b18c87d57878ef10e917e4fe3640c897ed5079d413a0fc5706329a4861f9a3 |
| ISICitedReferencesCount | 507 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441999400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-6535 1879-1298 |
| IngestDate | Thu Oct 02 11:06:19 EDT 2025 Wed Oct 01 13:39:02 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Tue Nov 18 21:16:43 EST 2025 Sat Nov 29 03:50:58 EST 2025 Fri Feb 23 02:32:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Phytoplankton Stimulation Microplastics Photosynthetic activity Aggregate |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c410t-4c2b18c87d57878ef10e917e4fe3640c897ed5079d413a0fc5706329a4861f9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8298-0350 |
| PMID | 29860145 |
| PQID | 2049937552 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2116919602 proquest_miscellaneous_2049937552 pubmed_primary_29860145 crossref_citationtrail_10_1016_j_chemosphere_2018_05_170 crossref_primary_10_1016_j_chemosphere_2018_05_170 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_05_170 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Chemosphere (Oxford) |
| PublicationTitleAlternate | Chemosphere |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Browne, Crump, Niven, Teuten, Tonkin, Galloway, Thompson (bib10) 2011; 45 Cincinelli, Scopetani, Chelazzi, Lombardini, Martellini, Katsoyiannis, Fossi, Corsolini (bib15) 2017; 175 Guven, Gokdag, Jovanovic, Kideys (bib22) 2017; 223 Redondo-Hasselerharm, Falahudin, Peeters, Koelmans (bib43) 2018 Koelmans, Besseling, Foekema, Kooi, Mintenig, Ossendorp, Redondo-Hasselerharm, Verschoor, van Wezel, Scheffer (bib32) 2017; 51 Ward, Kach (bib53) 2009; 68 Špoljar, Zhang, Dražina, Zhao, Lajtner, Radonić (bib46) 2017; 75 Besseling, Foekema, Van Franeker, Leopold, Kuhn, Bravo Rebolledo, Hesse, Mielke, IJzer, Kamminga, Koelmans (bib7) 2015; 95 Gigault, Halle, Baudrimont, Pascal, Gauffre, Phi, Hadri, Grassl, Reynaud (bib20) 2018; 235 Lagarde, Olivier, Zanella, Daniel, Hiard, Caruso (bib34) 2016; 215 Hong, Hu, Li (bib26) 2008; 90 Hadiyanto, Elmore, Van Gerven, Stankiewicz (bib23) 2013; 217 Bergami, Pugnalini, Vannuccini, Manfra, Faleri, Savorelli, Dawson, Corsi (bib5) 2017; 189 Long, Paul-Pont, Hegaret, Moriceau, Lambert, Huvet, Soudant (bib38) 2017; 228 Su, Xue, Li, Yang, Kolandhasamy, Li, Shi (bib47) 2016; 216 Leroueil, Berry, Duthie, Han, Rotello, McNerny, Baker, Orr, Banaszak Holl (bib37) 2008; 8 Chen, Mao, Kirumba, Jiang, Manefield, He (bib12) 2015; 122 Govindjee, Papageorgiou (bib21) 2004 Hong, Hu, Xie, Sakoda, Sagehashi, Li (bib27) 2009; 91 Zhang, Gong, Lv, Xiong, Wu (bib58) 2015; 204 Quigg, Chin, Chen, Zhang, Jiang, Miao, Schwehr, Xu, Santschi (bib42) 2013; 1 Galloway, Cole, Lewis (bib19) 2017; 1 Amado, Monserrat (bib3) 2010; 36 Hale (bib24) 2018 Yonkos, Friedel, Perez-Reyes, Ghosal, Arthur (bib55) 2014; 48 Alimi, Farner Budarz, Hernandez, Tufenkji (bib1) 2018 Eerkes-Medrano, Thompson, Aldridge (bib17) 2015; 75 Hondzo, Al-Homoud (bib25) 2007; 43 Alomar, Deudero (bib2) 2017; 223 Bergmann, Wirzberger, Krumpen, Lorenz, Primpke, Tekman, Gerdts (bib6) 2017; 51 Lechner, Keckeis, Lumesberger-Loisl, Zens, Krusch, Tritthart, Glas, Schludermann (bib35) 2014; 188 Tsai, Uzun, Karanfil, Chow (bib49) 2017; 51 Wang, Peng, Tan, Gao, Zhan, Chen, Cai (bib51) 2017; 171 Yoshida, Hiraga, Takehana, Taniguchi, Yamaj, Maeda, Toyohara, Miyamoto, Kimura, Oda (bib56) 2016; 351 Pakrashi, Dalai, Prathna, Trivedi, Myneni, Raichur, Chandrasekaran, Mukherjee (bib40) 2013; 132–133 Chen, Powell, Mortimer, Ke (bib13) 2012; 46 Besseling, Wang, Lurling, Koelmans (bib8) 2014; 48 Qian, Yu, Sun, Xie, Liu, Fu (bib41) 2010; 99 Song, Zhang, Li, Chen, Zhang (bib45) 2018; 636 Lenz, Enders, Nielsen (bib36) 2016; 113 Watts, Urbina, Goodhead, Moger, Lewis, Galloway (bib54) 2016; 50 Wang, Wang, Hu, Chang, Bi, Hu (bib50) 2015; 141 Wang, Zhu, Lao, Lv, Tao, Huang, Wang, Zhou, Cai (bib52) 2016; 565 Jeong, Won, Kang, Lee, Hwang, Hwang, Zhou, Souissi, Lee, Lee (bib30) 2016; 50 Cherchi, Chernenko, Diem, Gu (bib14) 2011; 30 Erni-Cassola, Gibson, Thompson, Christie-Oleza (bib18) 2017; 51 Anderson, Park, Palace (bib4) 2016; 218 Cole, Lindeque, Fileman, Clark, Lewis, Halsband, Galloway (bib16) 2016; 50 Canniff, Hoang (bib11) 2018; 633 Klein, Worch, Knepper (bib31) 2015; 49 Kottuparambil, Kim, Choi, Kim, Park, Park, Shin, Han (bib33) 2014; 155 Tian, Zhou, Sun, Cai, Xu, An, Duan (bib48) 2014; 37 Bhattacharya, Lin, Turner, Ke (bib9) 2010; 114 McDevitt, Criddle, Morse, Hale, Bott, Rochman (bib39) 2017; 51 Jambeck, Geyer, Wilcox, Sieglers, Perryman, Andrady, Narayan, Law (bib29) 2015; 347 Zhang, Chen, Wang, Tan (bib57) 2017; 220 Sjollema, Redondo-Hasselerharm, Leslie, Kraak, Vethaak (bib44) 2016; 170 Horton, Walton, Spurgeon, Lahive, Svendsen (bib28) 2017; 586 Qian (10.1016/j.chemosphere.2018.05.170_bib41) 2010; 99 Cincinelli (10.1016/j.chemosphere.2018.05.170_bib15) 2017; 175 Ward (10.1016/j.chemosphere.2018.05.170_bib53) 2009; 68 Besseling (10.1016/j.chemosphere.2018.05.170_bib7) 2015; 95 Lechner (10.1016/j.chemosphere.2018.05.170_bib35) 2014; 188 Klein (10.1016/j.chemosphere.2018.05.170_bib31) 2015; 49 Watts (10.1016/j.chemosphere.2018.05.170_bib54) 2016; 50 Kottuparambil (10.1016/j.chemosphere.2018.05.170_bib33) 2014; 155 Pakrashi (10.1016/j.chemosphere.2018.05.170_bib40) 2013; 132–133 Hong (10.1016/j.chemosphere.2018.05.170_bib27) 2009; 91 Lenz (10.1016/j.chemosphere.2018.05.170_bib36) 2016; 113 Chen (10.1016/j.chemosphere.2018.05.170_bib12) 2015; 122 McDevitt (10.1016/j.chemosphere.2018.05.170_bib39) 2017; 51 Wang (10.1016/j.chemosphere.2018.05.170_bib51) 2017; 171 Horton (10.1016/j.chemosphere.2018.05.170_bib28) 2017; 586 Zhang (10.1016/j.chemosphere.2018.05.170_bib58) 2015; 204 Canniff (10.1016/j.chemosphere.2018.05.170_bib11) 2018; 633 Cole (10.1016/j.chemosphere.2018.05.170_bib16) 2016; 50 Guven (10.1016/j.chemosphere.2018.05.170_bib22) 2017; 223 Chen (10.1016/j.chemosphere.2018.05.170_bib13) 2012; 46 Gigault (10.1016/j.chemosphere.2018.05.170_bib20) 2018; 235 Besseling (10.1016/j.chemosphere.2018.05.170_bib8) 2014; 48 Yonkos (10.1016/j.chemosphere.2018.05.170_bib55) 2014; 48 Hale (10.1016/j.chemosphere.2018.05.170_bib24) 2018 Long (10.1016/j.chemosphere.2018.05.170_bib38) 2017; 228 Wang (10.1016/j.chemosphere.2018.05.170_bib50) 2015; 141 Erni-Cassola (10.1016/j.chemosphere.2018.05.170_bib18) 2017; 51 Cherchi (10.1016/j.chemosphere.2018.05.170_bib14) 2011; 30 Bergami (10.1016/j.chemosphere.2018.05.170_bib5) 2017; 189 Alomar (10.1016/j.chemosphere.2018.05.170_bib2) 2017; 223 Quigg (10.1016/j.chemosphere.2018.05.170_bib42) 2013; 1 Hong (10.1016/j.chemosphere.2018.05.170_bib26) 2008; 90 Su (10.1016/j.chemosphere.2018.05.170_bib47) 2016; 216 Anderson (10.1016/j.chemosphere.2018.05.170_bib4) 2016; 218 Song (10.1016/j.chemosphere.2018.05.170_bib45) 2018; 636 Govindjee (10.1016/j.chemosphere.2018.05.170_bib21) 2004 Špoljar (10.1016/j.chemosphere.2018.05.170_bib46) 2017; 75 Zhang (10.1016/j.chemosphere.2018.05.170_bib57) 2017; 220 Eerkes-Medrano (10.1016/j.chemosphere.2018.05.170_bib17) 2015; 75 Hadiyanto (10.1016/j.chemosphere.2018.05.170_bib23) 2013; 217 Tsai (10.1016/j.chemosphere.2018.05.170_bib49) 2017; 51 Amado (10.1016/j.chemosphere.2018.05.170_bib3) 2010; 36 Redondo-Hasselerharm (10.1016/j.chemosphere.2018.05.170_bib43) 2018 Bergmann (10.1016/j.chemosphere.2018.05.170_bib6) 2017; 51 Jambeck (10.1016/j.chemosphere.2018.05.170_bib29) 2015; 347 Sjollema (10.1016/j.chemosphere.2018.05.170_bib44) 2016; 170 Jeong (10.1016/j.chemosphere.2018.05.170_bib30) 2016; 50 Tian (10.1016/j.chemosphere.2018.05.170_bib48) 2014; 37 Galloway (10.1016/j.chemosphere.2018.05.170_bib19) 2017; 1 Hondzo (10.1016/j.chemosphere.2018.05.170_bib25) 2007; 43 Browne (10.1016/j.chemosphere.2018.05.170_bib10) 2011; 45 Koelmans (10.1016/j.chemosphere.2018.05.170_bib32) 2017; 51 Leroueil (10.1016/j.chemosphere.2018.05.170_bib37) 2008; 8 Bhattacharya (10.1016/j.chemosphere.2018.05.170_bib9) 2010; 114 Lagarde (10.1016/j.chemosphere.2018.05.170_bib34) 2016; 215 Yoshida (10.1016/j.chemosphere.2018.05.170_bib56) 2016; 351 Alimi (10.1016/j.chemosphere.2018.05.170_bib1) 2018 Wang (10.1016/j.chemosphere.2018.05.170_bib52) 2016; 565 |
| References_xml | – year: 2018 ident: bib1 article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport publication-title: Environ. Sci. Technol. – volume: 223 start-page: 286 year: 2017 end-page: 294 ident: bib22 article-title: Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish publication-title: Environ. Pollut. – volume: 132–133 start-page: 34 year: 2013 end-page: 45 ident: bib40 article-title: Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations publication-title: Aquat. Toxicol. – volume: 46 start-page: 12178 year: 2012 end-page: 12185 ident: bib13 article-title: Adaptive interactions between zinc oxide nanoparticles and Chlorella sp publication-title: Environ. Sci. Technol. – volume: 113 start-page: E4121 year: 2016 end-page: E4122 ident: bib36 article-title: Microplastic exposure studies should be environmentally realistic publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 51 start-page: 13641 year: 2017 end-page: 13648 ident: bib18 article-title: Lost, but found with nile red: a novel method for detecting and quantifying small microplastics (1 mm to 20 mum) in environmental samples publication-title: Environ. Sci. Technol. – volume: 204 start-page: 117 year: 2015 end-page: 123 ident: bib58 article-title: Accumulation of floating microplastics behind the three gorges dam publication-title: Environ. Pollut. – volume: 586 start-page: 127 year: 2017 end-page: 141 ident: bib28 article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci. Total Environ. – volume: 45 start-page: 9175 year: 2011 end-page: 9179 ident: bib10 article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks publication-title: Environ. Sci. Technol. – year: 2018 ident: bib24 article-title: Are the risks from microplastics truly trivial? publication-title: Environ. Sci. Technol. – volume: 51 start-page: 11000 year: 2017 end-page: 11010 ident: bib6 article-title: High quantities of microplastic in arctic deep-sea sediments from the HAUSGARTEN observatory publication-title: Environ. Sci. Technol. – volume: 95 start-page: 248 year: 2015 end-page: 252 ident: bib7 article-title: Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae publication-title: Mar. Pollut. Bull. – volume: 189 start-page: 159 year: 2017 end-page: 169 ident: bib5 article-title: Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana publication-title: Aquat. Toxicol. – volume: 347 start-page: 768 year: 2015 end-page: 771 ident: bib29 article-title: Plastic waste inputs from land intothe ocean publication-title: Science – volume: 75 start-page: 145 year: 2017 end-page: 154 ident: bib46 article-title: Development of submerged macrophyte and epiphyton in a flow-through system: assessment and modelling predictions in interconnected reservoirs publication-title: Ecol. Indicat. – volume: 36 start-page: 226 year: 2010 end-page: 235 ident: bib3 article-title: Oxidative stress generation by microcystins in aquatic animals: why and how publication-title: Environ. Int. – volume: 351 start-page: 1196 year: 2016 end-page: 1199 ident: bib56 article-title: A bacterium that degrades and assimilates poly(ethylene terephthalate) publication-title: Science – volume: 43 year: 2007 ident: bib25 article-title: Model development and verification for mass transport to Escherichia coli cells in a turbulent flow publication-title: Water Resour. Res. – year: 2004 ident: bib21 article-title: Chlorophyll a Fluorescence: a Signature of Photosynthesis – volume: 223 start-page: 223 year: 2017 end-page: 229 ident: bib2 article-title: Evidence of microplastic ingestion in the shark Galeus melastomus Rafinesque, 1810 in the continental shelf off the western Mediterranean Sea publication-title: Environ. Pollut. – volume: 1 start-page: 116 year: 2017 ident: bib19 article-title: Interactions of microplastic debris throughout the marine ecosystem publication-title: Nat. Ecol. Evol. – volume: 216 start-page: 711 year: 2016 end-page: 719 ident: bib47 article-title: Microplastics in Taihu Lake, China publication-title: Environ. Pollut. – volume: 235 start-page: 1030 year: 2018 end-page: 1034 ident: bib20 article-title: Current opinion: what is a nanoplastic? publication-title: Environ. Pollut. – volume: 8 start-page: 420 year: 2008 end-page: 424 ident: bib37 article-title: Wide varieties of cationic nanoparticles induce defects in supported lipid bilayersnls publication-title: Nano Lett. – volume: 30 start-page: 861 year: 2011 end-page: 869 ident: bib14 article-title: Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization publication-title: Environ. Toxicol. Chem. – volume: 51 start-page: 11513 year: 2017 end-page: 11519 ident: bib32 article-title: Risks of plastic debris: unravelling fact, opinion, perception, and belief publication-title: Environ. Sci. Technol. – volume: 217 start-page: 231 year: 2013 end-page: 239 ident: bib23 article-title: Hydrodynamic evaluations in high rate algae pond (HRAP) design publication-title: Chem. Eng. J. – volume: 565 start-page: 818 year: 2016 end-page: 826 ident: bib52 article-title: TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum publication-title: Sci. Total Environ. – volume: 141 start-page: 34 year: 2015 end-page: 43 ident: bib50 article-title: The combined effects of UV-C radiation and H2O2 on Microcystis aeruginosa, a bloom-forming cyanobacterium publication-title: Chemosphere – volume: 50 start-page: 8849 year: 2016 end-page: 8857 ident: bib30 article-title: Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus) publication-title: Environ. Sci. Technol. – volume: 171 start-page: 248 year: 2017 end-page: 258 ident: bib51 article-title: Microplastics in the surface sediments from the Beijing River littoral zone: composition, abundance, surface textures and interaction with heavy metals publication-title: Chemosphere – volume: 155 start-page: 9 year: 2014 end-page: 14 ident: bib33 article-title: A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter publication-title: Aquat. Toxicol. – volume: 122 start-page: 126 year: 2015 end-page: 135 ident: bib12 article-title: Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress publication-title: Ecotoxicol. Environ. Saf. – volume: 49 start-page: 6070 year: 2015 end-page: 6076 ident: bib31 article-title: Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany publication-title: Environ. Sci. Technol. – volume: 68 start-page: 137 year: 2009 end-page: 142 ident: bib53 article-title: Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves publication-title: Mar. Environ. Res. – volume: 633 start-page: 500 year: 2018 end-page: 507 ident: bib11 article-title: Microplastic ingestion by Daphnia magna and its enhancement on algal growth publication-title: Sci. Total Environ. – volume: 99 start-page: 405 year: 2010 end-page: 412 ident: bib41 article-title: Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa publication-title: Aquat. Toxicol. – volume: 37 start-page: 153 year: 2014 end-page: 159 ident: bib48 article-title: Inhibitory effects of Chinese traditional herbs and herb-modified clays on the growth of harmful algae, Phaeocystis globosa and Prorocentrum donghaiense publication-title: Harmful Algae – volume: 220 start-page: 1282 year: 2017 end-page: 1288 ident: bib57 article-title: Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae publication-title: Environ. Pollut. – volume: 1 start-page: 686 year: 2013 end-page: 702 ident: bib42 article-title: Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter publication-title: ACS Sustain. Chem. Eng. – volume: 188 start-page: 177 year: 2014 end-page: 181 ident: bib35 article-title: The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe's second largest river publication-title: Environ. Pollut. – volume: 51 start-page: 8272 year: 2017 end-page: 8282 ident: bib49 article-title: Dynamic changes of disinfection byproduct precursors following exposures of Microcystis aeruginosa to wildfire ash solutions publication-title: Environ. Sci. Technol. – volume: 218 start-page: 269 year: 2016 end-page: 280 ident: bib4 article-title: Microplastics in aquatic environments: implications for Canadian ecosystems publication-title: Environ. Pollut. – volume: 636 start-page: 230 year: 2018 end-page: 239 ident: bib45 article-title: Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs publication-title: Sci. Total Environ. – volume: 75 start-page: 63 year: 2015 end-page: 82 ident: bib17 article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs publication-title: Water Res. – volume: 228 start-page: 454 year: 2017 end-page: 463 ident: bib38 article-title: Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation publication-title: Environ. Pollut. – volume: 114 start-page: 16556 year: 2010 end-page: 16561 ident: bib9 article-title: Physical adsorption of charged plastic nanoparticles Affects algal photosynthesis publication-title: J. Phys. Chem. C – volume: 215 start-page: 331 year: 2016 end-page: 339 ident: bib34 article-title: Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type publication-title: Environ. Pollut. – volume: 51 start-page: 6611 year: 2017 end-page: 6617 ident: bib39 article-title: Addressing the Issue of microplastics in the wake of the Microbead-Free Waters Act-A new standard can facilitate improved policy publication-title: Environ. Sci. Technol. – volume: 170 start-page: 259 year: 2016 end-page: 261 ident: bib44 article-title: Do plastic particles affect microalgal photosynthesis and growth? publication-title: Aquat. Toxicol. – volume: 91 start-page: 262 year: 2009 end-page: 269 ident: bib27 article-title: Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa publication-title: Aquat. Toxicol. – volume: 50 start-page: 5364 year: 2016 end-page: 5369 ident: bib54 article-title: Effect of microplastic on the gills of the shore crab Carcinus maenas publication-title: Environ. Sci. Technol. – volume: 50 start-page: 3239 year: 2016 end-page: 3246 ident: bib16 article-title: Microplastics alter the properties and sinking rates of zooplankton faecal pellets publication-title: Environ. Sci. Technol. – year: 2018 ident: bib43 article-title: Microplastic effect thresholds for freshwater benthic macroinvertebrates publication-title: Environ. Sci. Technol. – volume: 48 start-page: 14195 year: 2014 end-page: 14202 ident: bib55 article-title: Microplastics in four estuarine rivers in the Chesapeake Bay, U.S.A publication-title: Environ. Sci. Technol. – volume: 90 start-page: 203 year: 2008 end-page: 212 ident: bib26 article-title: Growth and physiological responses of freshwater green alga Selenastrum capricornutum to allelochemical ethyl 2-methyl acetoacetate (EMA) under different initial algal densities publication-title: Pestic. Biochem. Physiol. – volume: 48 start-page: 12336 year: 2014 end-page: 12343 ident: bib8 article-title: Nanoplastic affects growth of S. obliquus and reproduction of D. magna publication-title: Environ. Sci. Technol. – volume: 175 start-page: 391 year: 2017 end-page: 400 ident: bib15 article-title: Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR publication-title: Chemosphere – volume: 155 start-page: 9 year: 2014 ident: 10.1016/j.chemosphere.2018.05.170_bib33 article-title: A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2014.05.014 – volume: 633 start-page: 500 year: 2018 ident: 10.1016/j.chemosphere.2018.05.170_bib11 article-title: Microplastic ingestion by Daphnia magna and its enhancement on algal growth publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.176 – volume: 30 start-page: 861 year: 2011 ident: 10.1016/j.chemosphere.2018.05.170_bib14 article-title: Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.445 – volume: 113 start-page: E4121 year: 2016 ident: 10.1016/j.chemosphere.2018.05.170_bib36 article-title: Microplastic exposure studies should be environmentally realistic publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1606615113 – volume: 216 start-page: 711 year: 2016 ident: 10.1016/j.chemosphere.2018.05.170_bib47 article-title: Microplastics in Taihu Lake, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.06.036 – year: 2018 ident: 10.1016/j.chemosphere.2018.05.170_bib43 article-title: Microplastic effect thresholds for freshwater benthic macroinvertebrates publication-title: Environ. Sci. Technol. – volume: 636 start-page: 230 year: 2018 ident: 10.1016/j.chemosphere.2018.05.170_bib45 article-title: Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.257 – volume: 49 start-page: 6070 year: 2015 ident: 10.1016/j.chemosphere.2018.05.170_bib31 article-title: Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00492 – volume: 141 start-page: 34 year: 2015 ident: 10.1016/j.chemosphere.2018.05.170_bib50 article-title: The combined effects of UV-C radiation and H2O2 on Microcystis aeruginosa, a bloom-forming cyanobacterium publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.020 – volume: 90 start-page: 203 year: 2008 ident: 10.1016/j.chemosphere.2018.05.170_bib26 article-title: Growth and physiological responses of freshwater green alga Selenastrum capricornutum to allelochemical ethyl 2-methyl acetoacetate (EMA) under different initial algal densities publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2007.11.009 – year: 2018 ident: 10.1016/j.chemosphere.2018.05.170_bib1 article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05559 – volume: 51 start-page: 13641 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib18 article-title: Lost, but found with nile red: a novel method for detecting and quantifying small microplastics (1 mm to 20 mum) in environmental samples publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04512 – volume: 218 start-page: 269 year: 2016 ident: 10.1016/j.chemosphere.2018.05.170_bib4 article-title: Microplastics in aquatic environments: implications for Canadian ecosystems publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.06.074 – volume: 122 start-page: 126 year: 2015 ident: 10.1016/j.chemosphere.2018.05.170_bib12 article-title: Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2015.07.011 – volume: 48 start-page: 14195 year: 2014 ident: 10.1016/j.chemosphere.2018.05.170_bib55 article-title: Microplastics in four estuarine rivers in the Chesapeake Bay, U.S.A publication-title: Environ. Sci. Technol. doi: 10.1021/es5036317 – volume: 347 start-page: 768 year: 2015 ident: 10.1016/j.chemosphere.2018.05.170_bib29 article-title: Plastic waste inputs from land intothe ocean publication-title: Science doi: 10.1126/science.1260352 – volume: 48 start-page: 12336 year: 2014 ident: 10.1016/j.chemosphere.2018.05.170_bib8 article-title: Nanoplastic affects growth of S. obliquus and reproduction of D. magna publication-title: Environ. Sci. Technol. doi: 10.1021/es503001d – volume: 51 start-page: 11513 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib32 article-title: Risks of plastic debris: unravelling fact, opinion, perception, and belief publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02219 – volume: 8 start-page: 420 year: 2008 ident: 10.1016/j.chemosphere.2018.05.170_bib37 article-title: Wide varieties of cationic nanoparticles induce defects in supported lipid bilayersnls publication-title: Nano Lett. doi: 10.1021/nl0722929 – volume: 50 start-page: 5364 year: 2016 ident: 10.1016/j.chemosphere.2018.05.170_bib54 article-title: Effect of microplastic on the gills of the shore crab Carcinus maenas publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b01187 – volume: 565 start-page: 818 year: 2016 ident: 10.1016/j.chemosphere.2018.05.170_bib52 article-title: TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.03.164 – volume: 215 start-page: 331 year: 2016 ident: 10.1016/j.chemosphere.2018.05.170_bib34 article-title: Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.05.006 – volume: 75 start-page: 63 year: 2015 ident: 10.1016/j.chemosphere.2018.05.170_bib17 article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs publication-title: Water Res. doi: 10.1016/j.watres.2015.02.012 – volume: 223 start-page: 223 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib2 article-title: Evidence of microplastic ingestion in the shark Galeus melastomus Rafinesque, 1810 in the continental shelf off the western Mediterranean Sea publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.01.015 – volume: 45 start-page: 9175 year: 2011 ident: 10.1016/j.chemosphere.2018.05.170_bib10 article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks publication-title: Environ. Sci. Technol. doi: 10.1021/es201811s – volume: 171 start-page: 248 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib51 article-title: Microplastics in the surface sediments from the Beijing River littoral zone: composition, abundance, surface textures and interaction with heavy metals publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.12.074 – volume: 114 start-page: 16556 year: 2010 ident: 10.1016/j.chemosphere.2018.05.170_bib9 article-title: Physical adsorption of charged plastic nanoparticles Affects algal photosynthesis publication-title: J. Phys. Chem. C doi: 10.1021/jp1054759 – volume: 132–133 start-page: 34 year: 2013 ident: 10.1016/j.chemosphere.2018.05.170_bib40 article-title: Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2013.01.018 – volume: 189 start-page: 159 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib5 article-title: Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2017.06.008 – volume: 91 start-page: 262 year: 2009 ident: 10.1016/j.chemosphere.2018.05.170_bib27 article-title: Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2008.11.014 – volume: 1 start-page: 116 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib19 article-title: Interactions of microplastic debris throughout the marine ecosystem publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-017-0116 – volume: 175 start-page: 391 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib15 article-title: Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.02.024 – volume: 99 start-page: 405 year: 2010 ident: 10.1016/j.chemosphere.2018.05.170_bib41 article-title: Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2010.05.018 – volume: 204 start-page: 117 year: 2015 ident: 10.1016/j.chemosphere.2018.05.170_bib58 article-title: Accumulation of floating microplastics behind the three gorges dam publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.04.023 – volume: 50 start-page: 3239 year: 2016 ident: 10.1016/j.chemosphere.2018.05.170_bib16 article-title: Microplastics alter the properties and sinking rates of zooplankton faecal pellets publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05905 – volume: 1 start-page: 686 year: 2013 ident: 10.1016/j.chemosphere.2018.05.170_bib42 article-title: Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc400103x – volume: 50 start-page: 8849 year: 2016 ident: 10.1016/j.chemosphere.2018.05.170_bib30 article-title: Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b01441 – volume: 586 start-page: 127 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib28 article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.190 – volume: 51 start-page: 11000 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib6 article-title: High quantities of microplastic in arctic deep-sea sediments from the HAUSGARTEN observatory publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03331 – volume: 235 start-page: 1030 year: 2018 ident: 10.1016/j.chemosphere.2018.05.170_bib20 article-title: Current opinion: what is a nanoplastic? publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.01.024 – volume: 36 start-page: 226 year: 2010 ident: 10.1016/j.chemosphere.2018.05.170_bib3 article-title: Oxidative stress generation by microcystins in aquatic animals: why and how publication-title: Environ. Int. doi: 10.1016/j.envint.2009.10.010 – volume: 217 start-page: 231 year: 2013 ident: 10.1016/j.chemosphere.2018.05.170_bib23 article-title: Hydrodynamic evaluations in high rate algae pond (HRAP) design publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.12.015 – volume: 223 start-page: 286 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib22 article-title: Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.01.025 – volume: 43 year: 2007 ident: 10.1016/j.chemosphere.2018.05.170_bib25 article-title: Model development and verification for mass transport to Escherichia coli cells in a turbulent flow publication-title: Water Resour. Res. doi: 10.1029/2006WR005613 – volume: 188 start-page: 177 year: 2014 ident: 10.1016/j.chemosphere.2018.05.170_bib35 article-title: The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe's second largest river publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2014.02.006 – year: 2004 ident: 10.1016/j.chemosphere.2018.05.170_bib21 – volume: 37 start-page: 153 year: 2014 ident: 10.1016/j.chemosphere.2018.05.170_bib48 article-title: Inhibitory effects of Chinese traditional herbs and herb-modified clays on the growth of harmful algae, Phaeocystis globosa and Prorocentrum donghaiense publication-title: Harmful Algae doi: 10.1016/j.hal.2014.05.015 – volume: 351 start-page: 1196 year: 2016 ident: 10.1016/j.chemosphere.2018.05.170_bib56 article-title: A bacterium that degrades and assimilates poly(ethylene terephthalate) publication-title: Science doi: 10.1126/science.aad6359 – volume: 170 start-page: 259 year: 2016 ident: 10.1016/j.chemosphere.2018.05.170_bib44 article-title: Do plastic particles affect microalgal photosynthesis and growth? publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2015.12.002 – volume: 220 start-page: 1282 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib57 article-title: Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.11.005 – volume: 68 start-page: 137 year: 2009 ident: 10.1016/j.chemosphere.2018.05.170_bib53 article-title: Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves publication-title: Mar. Environ. Res. doi: 10.1016/j.marenvres.2009.05.002 – volume: 228 start-page: 454 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib38 article-title: Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.05.047 – volume: 95 start-page: 248 year: 2015 ident: 10.1016/j.chemosphere.2018.05.170_bib7 article-title: Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2015.04.007 – year: 2018 ident: 10.1016/j.chemosphere.2018.05.170_bib24 article-title: Are the risks from microplastics truly trivial? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b06615 – volume: 75 start-page: 145 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib46 article-title: Development of submerged macrophyte and epiphyton in a flow-through system: assessment and modelling predictions in interconnected reservoirs publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2016.12.038 – volume: 46 start-page: 12178 year: 2012 ident: 10.1016/j.chemosphere.2018.05.170_bib13 article-title: Adaptive interactions between zinc oxide nanoparticles and Chlorella sp publication-title: Environ. Sci. Technol. doi: 10.1021/es303303g – volume: 51 start-page: 6611 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib39 article-title: Addressing the Issue of microplastics in the wake of the Microbead-Free Waters Act-A new standard can facilitate improved policy publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05812 – volume: 51 start-page: 8272 year: 2017 ident: 10.1016/j.chemosphere.2018.05.170_bib49 article-title: Dynamic changes of disinfection byproduct precursors following exposures of Microcystis aeruginosa to wildfire ash solutions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01541 |
| SSID | ssj0001659 |
| Score | 2.7047594 |
| Snippet | Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 59 |
| SubjectTerms | adverse effects Aggregate algae aquatic environment cell walls Chlorella pyrenoidosa dose response Microplastics oxidative stress photosynthesis Photosynthetic activity Phytoplankton plastics polystyrenes risk Stimulation thylakoids |
| Title | Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period |
| URI | https://dx.doi.org/10.1016/j.chemosphere.2018.05.170 https://www.ncbi.nlm.nih.gov/pubmed/29860145 https://www.proquest.com/docview/2049937552 https://www.proquest.com/docview/2116919602 |
| Volume | 208 |
| WOSCitedRecordID | wos000441999400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1298 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001659 issn: 0045-6535 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEF45Tl-Xqk1f6SPaSFUvERGsWViqXiLLUVu5rg-O5FSq0AJL49QFamMr_vedYQFjRa7cQy_Igl0b73zMzgwz3xDy1pWKdRR4qrYbRIbtgLsjYhYapghc7sTcilVRKNx3BwMxHnvDVmtZ1cIsp26SiJsbL_uvooZzIGwsnf0HcddfCifgMwgdjiB2OO4k-OHVKk-zqUx-ImPGTOfAFg0ysnS6mmPUGQzLX5iIB6MKmmYMCwzXVZe65gQefMwkmqmTH-Cq51fIcDxJN_p6IttAOkdigsJS1cWHjdjCF1kEYi8XsSo3SISW7pONVVs1MLtljcjl5FYg-xtcWi2awQlL1GlutcK1ueFwzUhSKVxmipPslHuGbqhTqs6SGFxvwvrKLfWuIw3Xp-H672F2nkDyVUs3INmk1B589c8v-n1_1BuP3mW_Dew2hm_ly9Yre2SfudwTbbJ_9qk3_lzv4ZbDteNU3v49crzODNzy69ssm22eS2HBjB6Rh6XrQc80ZB6TlkoOyP1u1fHvgNztFRTmqyfk-waIaAUimqe0ASK6AaL3tAEhihCiMqEaQlRDiGoIPSUX571R96NRNuIwQtsyc8MOWWCJULgR6nehYstU4OYrO1YdxzZD4bkqAsfCi8AkkmYcchcsX-ZJWzhW7MnOM9JO0kS9IJRJZZphJEFHCDvosCDwbBEoFcrIdCTjh0RUi-iHJUs9NkuZ-lU64rXfWH8f1983uQ_rf0hYPTXTVC27TPpQScovbU5tS_qAuV2mH1fS9UFY-LJNJipdzGGQjaY_5-wvYyykqvIcE8Y819Co75x5wsFX_i93mP2KPFg_fK9JO58t1BtyJ1zmk_nsiOy5Y3FUIvwPlObJ1A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytoplankton+response+to+polystyrene+microplastics%3A+Perspective+from+an+entire+growth+period&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Mao%2C+Yufeng&rft.au=Ai%2C+Hainan&rft.au=Chen%2C+Yi&rft.au=Zhang%2C+Zhenyu&rft.date=2018-10-01&rft.issn=0045-6535&rft.volume=208+p.59-68&rft.spage=59&rft.epage=68&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.05.170&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |