Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period

Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 an...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) Vol. 208; pp. 59 - 68
Main Authors: Mao, Yufeng, Ai, Hainan, Chen, Yi, Zhang, Zhenyu, Zeng, Peng, Kang, Li, Li, Wei, Gu, Weikang, He, Qiang, Li, Hong
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01.10.2018
Subjects:
ISSN:0045-6535, 1879-1298, 1879-1298
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 and 1.0 μm and 3 concentration gradients each, which covered (10 and 50 mg/L) and exceeded (100 mg/L) its environmental concentrations, respectively. PS microplastics caused dose-dependent adverse effects on Chlorella pyrenoidosa growth from the lag to the earlier logarithmic phases, but exhibited slight difference in the maximal inhibition ratio (approximately 38%) with respect to the two microplastic sizes. In addition to the reduced photosynthetic activity of Chlorella pyrenoidosa, unclear pyrenoids, distorted thylakoids and damaged cell membrane were observed, attributing to the physical damage and oxidative stress caused by microplastics. However, from the end of the logarithmic to the stationary phase, Chlorella pyrenoidosa could reduce the adverse effects of microplastics jointly through cell wall thickening, algae homo-aggregation and algae-microplastics hetero-aggregation, hence triggering an increase of algal photosynthetic activity and its growth, and cell structures turned to normal. Our study confirmed that PS microplastics can impair but then enhance algae growth, which will be helpful in understanding the ecological risks of microplastics. [Display omitted] •Effects of PS microplastics on algae were studied over its entire growth period.•PS microplastics caused depression but then stimulation of algal growth.•Physical damage and oxidative stress are involved in depression of algal growth.
AbstractList Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 and 1.0 μm and 3 concentration gradients each, which covered (10 and 50 mg/L) and exceeded (100 mg/L) its environmental concentrations, respectively. PS microplastics caused dose-dependent adverse effects on Chlorella pyrenoidosa growth from the lag to the earlier logarithmic phases, but exhibited slight difference in the maximal inhibition ratio (approximately 38%) with respect to the two microplastic sizes. In addition to the reduced photosynthetic activity of Chlorella pyrenoidosa, unclear pyrenoids, distorted thylakoids and damaged cell membrane were observed, attributing to the physical damage and oxidative stress caused by microplastics. However, from the end of the logarithmic to the stationary phase, Chlorella pyrenoidosa could reduce the adverse effects of microplastics jointly through cell wall thickening, algae homo-aggregation and algae-microplastics hetero-aggregation, hence triggering an increase of algal photosynthetic activity and its growth, and cell structures turned to normal. Our study confirmed that PS microplastics can impair but then enhance algae growth, which will be helpful in understanding the ecological risks of microplastics. [Display omitted] •Effects of PS microplastics on algae were studied over its entire growth period.•PS microplastics caused depression but then stimulation of algal growth.•Physical damage and oxidative stress are involved in depression of algal growth.
Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 and 1.0 μm and 3 concentration gradients each, which covered (10 and 50 mg/L) and exceeded (100 mg/L) its environmental concentrations, respectively. PS microplastics caused dose-dependent adverse effects on Chlorella pyrenoidosa growth from the lag to the earlier logarithmic phases, but exhibited slight difference in the maximal inhibition ratio (approximately 38%) with respect to the two microplastic sizes. In addition to the reduced photosynthetic activity of Chlorella pyrenoidosa, unclear pyrenoids, distorted thylakoids and damaged cell membrane were observed, attributing to the physical damage and oxidative stress caused by microplastics. However, from the end of the logarithmic to the stationary phase, Chlorella pyrenoidosa could reduce the adverse effects of microplastics jointly through cell wall thickening, algae homo-aggregation and algae-microplastics hetero-aggregation, hence triggering an increase of algal photosynthetic activity and its growth, and cell structures turned to normal. Our study confirmed that PS microplastics can impair but then enhance algae growth, which will be helpful in understanding the ecological risks of microplastics.Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 and 1.0 μm and 3 concentration gradients each, which covered (10 and 50 mg/L) and exceeded (100 mg/L) its environmental concentrations, respectively. PS microplastics caused dose-dependent adverse effects on Chlorella pyrenoidosa growth from the lag to the earlier logarithmic phases, but exhibited slight difference in the maximal inhibition ratio (approximately 38%) with respect to the two microplastic sizes. In addition to the reduced photosynthetic activity of Chlorella pyrenoidosa, unclear pyrenoids, distorted thylakoids and damaged cell membrane were observed, attributing to the physical damage and oxidative stress caused by microplastics. However, from the end of the logarithmic to the stationary phase, Chlorella pyrenoidosa could reduce the adverse effects of microplastics jointly through cell wall thickening, algae homo-aggregation and algae-microplastics hetero-aggregation, hence triggering an increase of algal photosynthetic activity and its growth, and cell structures turned to normal. Our study confirmed that PS microplastics can impair but then enhance algae growth, which will be helpful in understanding the ecological risks of microplastics.
Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 and 1.0 μm and 3 concentration gradients each, which covered (10 and 50 mg/L) and exceeded (100 mg/L) its environmental concentrations, respectively. PS microplastics caused dose-dependent adverse effects on Chlorella pyrenoidosa growth from the lag to the earlier logarithmic phases, but exhibited slight difference in the maximal inhibition ratio (approximately 38%) with respect to the two microplastic sizes. In addition to the reduced photosynthetic activity of Chlorella pyrenoidosa, unclear pyrenoids, distorted thylakoids and damaged cell membrane were observed, attributing to the physical damage and oxidative stress caused by microplastics. However, from the end of the logarithmic to the stationary phase, Chlorella pyrenoidosa could reduce the adverse effects of microplastics jointly through cell wall thickening, algae homo-aggregation and algae-microplastics hetero-aggregation, hence triggering an increase of algal photosynthetic activity and its growth, and cell structures turned to normal. Our study confirmed that PS microplastics can impair but then enhance algae growth, which will be helpful in understanding the ecological risks of microplastics.
Author Ai, Hainan
Chen, Yi
Gu, Weikang
Zhang, Zhenyu
Li, Hong
Zeng, Peng
Mao, Yufeng
Li, Wei
He, Qiang
Kang, Li
Author_xml – sequence: 1
  givenname: Yufeng
  surname: Mao
  fullname: Mao, Yufeng
  organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
– sequence: 2
  givenname: Hainan
  surname: Ai
  fullname: Ai, Hainan
  organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-8298-0350
  surname: Chen
  fullname: Chen, Yi
  organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
– sequence: 4
  givenname: Zhenyu
  surname: Zhang
  fullname: Zhang, Zhenyu
  organization: Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 5
  givenname: Peng
  surname: Zeng
  fullname: Zeng, Peng
  organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
– sequence: 6
  givenname: Li
  surname: Kang
  fullname: Kang, Li
  organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
– sequence: 7
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
– sequence: 8
  givenname: Weikang
  surname: Gu
  fullname: Gu, Weikang
  organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
– sequence: 9
  givenname: Qiang
  surname: He
  fullname: He, Qiang
  email: 20150188@cqu.edu.cn
  organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
– sequence: 10
  givenname: Hong
  surname: Li
  fullname: Li, Hong
  email: hongli@cqu.edu.cn
  organization: Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29860145$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v3CAURVGVqJmk_QsV3XVj92EbA91U1ahfUqRmkSwjRPBzh6kNLjCJ5t-X0SRS1U2zYsG5F3HPOTnxwSMhbxnUDFj_flvbDc4hLRuMWDfAZA28ZgJekBWTQlWsUfKErAA6XvW85WfkPKUtQAlz9ZKcleseWMdX5PZqs89hmYz_lYOnEdMSfEKaA13CtE95H9EjnZ2NByplZ9MHeoUxLWizu0c6xjBT4yn67CLSnzE85A1dMLowvCKno5kSvn48L8jNl8_X62_V5Y-v39efLivbMchVZ5s7Jq0UAxdSSBwZoGICuxHbvgMrlcCBg1BDx1oDo-UC-rZRppM9G5VpL8i7Y-8Sw-8dpqxnlyxO5VsYdkk3jPWKqR6a_6PQKdUKzg_om0d0dzfjoJfoZhP3-mm9Anw8AmWclCKO2rpssgs-R-MmzUAffOmt_suXPvjSwHXxVRrUPw1Pjzwnuz5msSx77zDqZB16i0PxYLMegntGyx8jOLiY
CitedBy_id crossref_primary_10_3390_toxics11050469
crossref_primary_10_1007_s12210_022_01104_6
crossref_primary_10_1016_j_jenvman_2023_118246
crossref_primary_10_3390_biology12111430
crossref_primary_10_1016_j_chemosphere_2021_132943
crossref_primary_10_1016_j_scitotenv_2020_138180
crossref_primary_10_1016_j_rhisph_2022_100542
crossref_primary_10_1016_j_envpol_2024_123960
crossref_primary_10_3390_w16101360
crossref_primary_10_3390_nano11020482
crossref_primary_10_1016_j_scitotenv_2022_155192
crossref_primary_10_1016_j_jhazmat_2025_137898
crossref_primary_10_1016_j_ecoenv_2023_114564
crossref_primary_10_3390_jmse9040433
crossref_primary_10_4491_KSEE_2022_44_11_453
crossref_primary_10_1007_s11356_022_20107_2
crossref_primary_10_3390_w14152422
crossref_primary_10_1007_s11356_025_36161_5
crossref_primary_10_1016_j_envpol_2024_123850
crossref_primary_10_1016_j_jhazmat_2024_135062
crossref_primary_10_1016_j_algal_2023_103059
crossref_primary_10_1016_j_aquatox_2022_106097
crossref_primary_10_1016_j_aquatox_2023_106595
crossref_primary_10_1016_j_jhazmat_2023_132891
crossref_primary_10_1177_00368504221132151
crossref_primary_10_1007_s11270_021_05267_0
crossref_primary_10_1007_s44169_023_00047_9
crossref_primary_10_1016_j_envpol_2019_113451
crossref_primary_10_1016_j_jhazmat_2020_123092
crossref_primary_10_1016_j_marpolbul_2023_114584
crossref_primary_10_1016_j_chemosphere_2022_135034
crossref_primary_10_1016_j_scitotenv_2021_146094
crossref_primary_10_1016_j_scitotenv_2024_175227
crossref_primary_10_3390_environments11080165
crossref_primary_10_1016_j_scitotenv_2023_168414
crossref_primary_10_1016_j_aquatox_2020_105650
crossref_primary_10_1016_j_envpol_2024_123863
crossref_primary_10_1016_j_envpol_2025_126010
crossref_primary_10_1007_s11356_019_04865_0
crossref_primary_10_1007_s11356_024_33961_z
crossref_primary_10_1007_s10452_022_09966_6
crossref_primary_10_3390_ijerph16234639
crossref_primary_10_1016_j_ecoenv_2020_111000
crossref_primary_10_1016_j_envpol_2019_04_142
crossref_primary_10_1016_j_scitotenv_2019_135558
crossref_primary_10_1007_s44169_023_00038_w
crossref_primary_10_1016_j_algal_2022_102835
crossref_primary_10_1016_j_jhazmat_2025_138645
crossref_primary_10_1016_j_jhazmat_2025_138766
crossref_primary_10_1016_j_jhazmat_2019_121224
crossref_primary_10_1016_j_scitotenv_2023_164298
crossref_primary_10_1016_j_rsma_2025_104244
crossref_primary_10_1016_j_jhazmat_2021_126843
crossref_primary_10_1016_j_ecoenv_2023_115673
crossref_primary_10_1080_10590501_2019_1699379
crossref_primary_10_1016_j_scitotenv_2021_150252
crossref_primary_10_1016_j_aquatox_2021_105840
crossref_primary_10_1016_j_envpol_2023_121156
crossref_primary_10_1016_j_jclepro_2024_142153
crossref_primary_10_1016_j_watres_2024_121706
crossref_primary_10_1016_j_jhazmat_2025_138650
crossref_primary_10_1016_j_chemosphere_2024_143110
crossref_primary_10_1002_wer_70032
crossref_primary_10_1016_j_jenvman_2025_124286
crossref_primary_10_1016_j_scitotenv_2020_142572
crossref_primary_10_1016_j_watres_2020_116476
crossref_primary_10_1016_j_jhazmat_2023_132994
crossref_primary_10_1016_j_envres_2024_120046
crossref_primary_10_1016_j_resconrec_2021_105961
crossref_primary_10_1016_j_envpol_2019_113475
crossref_primary_10_1016_j_envpol_2021_117413
crossref_primary_10_1016_j_marpolbul_2025_118282
crossref_primary_10_1007_s10311_021_01370_0
crossref_primary_10_1007_s11356_023_29999_0
crossref_primary_10_1016_j_jece_2023_111287
crossref_primary_10_1007_s11356_022_22690_w
crossref_primary_10_1016_j_jconhyd_2024_104399
crossref_primary_10_1016_j_scitotenv_2023_168116
crossref_primary_10_1016_j_jwpe_2023_104599
crossref_primary_10_1016_j_envpol_2023_123127
crossref_primary_10_1016_j_chemosphere_2024_143120
crossref_primary_10_1016_j_jhazmat_2024_135273
crossref_primary_10_1016_j_ecoenv_2019_01_113
crossref_primary_10_1016_j_envpol_2024_124604
crossref_primary_10_1016_j_envres_2025_120750
crossref_primary_10_3390_w15091744
crossref_primary_10_1016_j_scitotenv_2023_166057
crossref_primary_10_1016_j_scitotenv_2023_166298
crossref_primary_10_1080_21655979_2024_2314888
crossref_primary_10_3390_polym14204299
crossref_primary_10_1016_j_envpol_2019_113149
crossref_primary_10_1016_j_aquatox_2021_105747
crossref_primary_10_1016_j_watres_2024_121841
crossref_primary_10_3390_toxics10020076
crossref_primary_10_1016_j_algal_2023_103378
crossref_primary_10_1016_j_envpol_2025_126586
crossref_primary_10_1016_j_envres_2022_113370
crossref_primary_10_3390_molecules28093958
crossref_primary_10_1016_j_scitotenv_2022_158560
crossref_primary_10_1016_j_chemosphere_2019_125485
crossref_primary_10_3389_ftox_2023_1135081
crossref_primary_10_1007_s11356_021_16286_z
crossref_primary_10_1016_j_scitotenv_2023_167017
crossref_primary_10_1016_j_jhazmat_2022_130137
crossref_primary_10_1016_j_scitotenv_2021_151638
crossref_primary_10_1016_j_ecoenv_2020_111153
crossref_primary_10_1039_D4EN01223B
crossref_primary_10_1007_s11783_021_1436_0
crossref_primary_10_1016_j_marpolbul_2023_114755
crossref_primary_10_1080_10643389_2025_2502372
crossref_primary_10_1016_j_scitotenv_2024_177200
crossref_primary_10_1039_D2EN00123C
crossref_primary_10_1016_j_envpol_2023_123022
crossref_primary_10_1016_j_ijsrc_2025_04_003
crossref_primary_10_1016_j_scitotenv_2020_143633
crossref_primary_10_1016_j_chemosphere_2022_137225
crossref_primary_10_1038_s41581_025_00971_0
crossref_primary_10_1016_j_chemosphere_2020_129030
crossref_primary_10_1016_j_scitotenv_2022_158214
crossref_primary_10_1016_j_scitotenv_2022_158334
crossref_primary_10_1007_s11356_021_12983_x
crossref_primary_10_1016_j_chemosphere_2022_135162
crossref_primary_10_1016_j_envexpbot_2024_105666
crossref_primary_10_1016_j_jhazmat_2023_131618
crossref_primary_10_1016_j_marpolbul_2020_111278
crossref_primary_10_1007_s11270_021_05081_8
crossref_primary_10_1016_j_scitotenv_2020_140349
crossref_primary_10_1016_j_aquatox_2023_106771
crossref_primary_10_1016_j_envpol_2020_115098
crossref_primary_10_3390_w17050655
crossref_primary_10_1016_j_aquatox_2024_106838
crossref_primary_10_1016_j_scitotenv_2023_166140
crossref_primary_10_1007_s10806_019_09785_0
crossref_primary_10_1016_j_envpol_2025_126317
crossref_primary_10_1016_j_marenvres_2025_106965
crossref_primary_10_1016_j_marpolbul_2020_111624
crossref_primary_10_1038_s41598_022_22906_6
crossref_primary_10_1016_j_jhazmat_2021_128094
crossref_primary_10_1016_j_microc_2023_109036
crossref_primary_10_1016_j_envpol_2022_119626
crossref_primary_10_1016_j_envpol_2019_113628
crossref_primary_10_1016_j_marenvres_2023_106281
crossref_primary_10_1016_j_scitotenv_2023_167864
crossref_primary_10_1016_j_envpol_2024_124649
crossref_primary_10_1016_j_scitotenv_2020_137376
crossref_primary_10_1016_j_ibiod_2023_105581
crossref_primary_10_1016_j_scitotenv_2024_173218
crossref_primary_10_1016_j_scitotenv_2023_162291
crossref_primary_10_1016_j_psep_2023_12_058
crossref_primary_10_1007_s11356_023_30910_0
crossref_primary_10_1016_j_chemosphere_2024_142641
crossref_primary_10_1016_j_envpol_2023_121092
crossref_primary_10_1016_j_chemosphere_2019_03_163
crossref_primary_10_1088_1755_1315_1013_1_012014
crossref_primary_10_1002_jat_4034
crossref_primary_10_1016_j_jtbi_2024_111733
crossref_primary_10_1007_s44169_023_00031_3
crossref_primary_10_1038_s41598_025_08674_z
crossref_primary_10_1016_j_scitotenv_2022_158763
crossref_primary_10_1007_s00128_022_03659_4
crossref_primary_10_1016_j_envpol_2020_114985
crossref_primary_10_1016_j_scitotenv_2022_159614
crossref_primary_10_3389_fmicb_2021_773226
crossref_primary_10_1016_j_chemosphere_2024_143983
crossref_primary_10_1016_j_envint_2022_107662
crossref_primary_10_1016_j_watres_2022_119313
crossref_primary_10_1007_s11270_023_06642_9
crossref_primary_10_3389_fmars_2022_851281
crossref_primary_10_1021_acs_est_5c02570
crossref_primary_10_1016_j_envpol_2024_123349
crossref_primary_10_1016_j_envpol_2024_123347
crossref_primary_10_1016_j_marpolbul_2020_111403
crossref_primary_10_1016_j_scitotenv_2022_160603
crossref_primary_10_1016_j_chemosphere_2022_134556
crossref_primary_10_1016_j_etap_2019_01_006
crossref_primary_10_1002_ece3_70041
crossref_primary_10_1016_j_envpol_2019_113760
crossref_primary_10_1016_j_heliyon_2024_e32881
crossref_primary_10_1007_s10661_025_13737_9
crossref_primary_10_1016_j_watres_2023_119717
crossref_primary_10_1007_s11270_020_04845_y
crossref_primary_10_1080_26395940_2022_2128884
crossref_primary_10_1016_j_scitotenv_2021_148337
crossref_primary_10_1080_10889868_2025_2544600
crossref_primary_10_1016_j_scitotenv_2024_174660
crossref_primary_10_3390_su14020828
crossref_primary_10_1016_j_marenvres_2024_106793
crossref_primary_10_1016_j_envpol_2021_118101
crossref_primary_10_1007_s13762_024_05846_8
crossref_primary_10_1016_j_cej_2025_162557
crossref_primary_10_1016_j_jenvman_2024_123055
crossref_primary_10_1016_j_jhazmat_2022_129692
crossref_primary_10_1007_s13762_019_02582_2
crossref_primary_10_1016_j_chemosphere_2021_131814
crossref_primary_10_1016_j_marenvres_2024_106645
crossref_primary_10_1016_j_scitotenv_2022_155036
crossref_primary_10_1016_j_jclepro_2020_125240
crossref_primary_10_1016_j_marpolbul_2020_111425
crossref_primary_10_1016_j_scitotenv_2021_147535
crossref_primary_10_1016_j_scitotenv_2020_139991
crossref_primary_10_35208_ert_1499952
crossref_primary_10_1016_j_jhazmat_2024_136648
crossref_primary_10_1007_s10311_024_01699_2
crossref_primary_10_1007_s11356_019_05826_3
crossref_primary_10_1016_j_ecoenv_2020_110456
crossref_primary_10_1016_j_scitotenv_2020_138547
crossref_primary_10_1016_j_watres_2025_123476
crossref_primary_10_1016_j_chemosphere_2022_135341
crossref_primary_10_1016_j_chemosphere_2020_126059
crossref_primary_10_3390_toxics11050414
crossref_primary_10_1016_j_envres_2023_116422
crossref_primary_10_1016_j_watres_2022_118154
crossref_primary_10_1016_j_envpol_2020_115905
crossref_primary_10_1016_j_envpol_2025_126987
crossref_primary_10_1016_j_ecoenv_2024_115996
crossref_primary_10_1039_D4EN00300D
crossref_primary_10_1016_j_watres_2023_120778
crossref_primary_10_1088_1748_9326_ac3bfd
crossref_primary_10_1016_j_envpol_2021_118042
crossref_primary_10_1016_j_cbpc_2021_109144
crossref_primary_10_1016_j_ecoenv_2021_111894
crossref_primary_10_1016_j_psep_2022_11_077
crossref_primary_10_1016_j_scitotenv_2023_164388
crossref_primary_10_1007_s11356_025_35981_9
crossref_primary_10_1016_j_scitotenv_2021_147670
crossref_primary_10_1016_j_envpol_2020_115911
crossref_primary_10_1007_s10653_024_01862_2
crossref_primary_10_1016_j_trac_2018_10_025
crossref_primary_10_1016_j_watres_2025_124104
crossref_primary_10_1016_j_jhazmat_2020_124835
crossref_primary_10_1016_j_envpol_2024_124237
crossref_primary_10_1016_j_scitotenv_2022_153074
crossref_primary_10_1016_j_scitotenv_2020_140638
crossref_primary_10_1016_j_envpol_2024_124478
crossref_primary_10_1016_j_scitotenv_2020_141603
crossref_primary_10_1016_j_scitotenv_2023_169707
crossref_primary_10_3389_fenvs_2020_551075
crossref_primary_10_1016_j_scitotenv_2023_164017
crossref_primary_10_1016_j_aquatox_2019_105319
crossref_primary_10_1016_j_cbpc_2021_109056
crossref_primary_10_1016_j_envpol_2022_120987
crossref_primary_10_1016_j_scitotenv_2022_159943
crossref_primary_10_3390_ma17153701
crossref_primary_10_1016_j_jhazmat_2022_130523
crossref_primary_10_1016_j_heliyon_2024_e30021
crossref_primary_10_1016_j_envexpbot_2021_104510
crossref_primary_10_1016_j_envpol_2025_125996
crossref_primary_10_1016_j_scitotenv_2019_136050
crossref_primary_10_1016_j_jhazmat_2020_124967
crossref_primary_10_1016_j_scitotenv_2022_153063
crossref_primary_10_1016_j_chemosphere_2024_142220
crossref_primary_10_1016_j_jhazmat_2024_134116
crossref_primary_10_1016_j_ecoenv_2020_110484
crossref_primary_10_1016_j_ecoenv_2020_111575
crossref_primary_10_1016_j_scitotenv_2023_163398
crossref_primary_10_1016_j_jhazmat_2021_126084
crossref_primary_10_1016_j_jhazmat_2022_128323
crossref_primary_10_1016_j_jhazmat_2019_121376
crossref_primary_10_1016_j_jhazmat_2022_128561
crossref_primary_10_1016_j_jhazmat_2021_127174
crossref_primary_10_1016_j_jhazmat_2023_130814
crossref_primary_10_1016_j_scitotenv_2022_158906
crossref_primary_10_1016_j_scitotenv_2024_173864
crossref_primary_10_1007_s11356_020_08104_9
crossref_primary_10_1177_0040517521991244
crossref_primary_10_1016_j_scitotenv_2024_171563
crossref_primary_10_1016_j_gr_2021_07_029
crossref_primary_10_1016_j_scitotenv_2024_170591
crossref_primary_10_1007_s10532_025_10187_5
crossref_primary_10_1016_j_chemosphere_2021_133240
crossref_primary_10_1007_s12649_025_03062_0
crossref_primary_10_1016_j_envpol_2022_119108
crossref_primary_10_1016_j_envpol_2025_126829
crossref_primary_10_1016_j_aquatox_2023_106802
crossref_primary_10_1016_j_jhazmat_2022_129879
crossref_primary_10_1016_j_fbio_2024_104157
crossref_primary_10_1016_j_jhazmat_2022_129515
crossref_primary_10_1016_j_envpol_2020_115429
crossref_primary_10_1016_j_plaphy_2023_108065
crossref_primary_10_1007_s11356_023_28314_1
crossref_primary_10_1016_j_envpol_2024_124028
crossref_primary_10_1016_j_scitotenv_2021_146534
crossref_primary_10_1007_s11356_024_35741_1
crossref_primary_10_1134_S1995082924020093
crossref_primary_10_1016_j_scitotenv_2023_164985
crossref_primary_10_1016_j_jhazmat_2019_04_039
crossref_primary_10_1016_j_watres_2024_121121
crossref_primary_10_1007_s11756_024_01839_7
crossref_primary_10_1007_s11356_021_15300_8
crossref_primary_10_1016_j_scitotenv_2020_138616
crossref_primary_10_1016_j_jhazmat_2021_126057
crossref_primary_10_3389_fmars_2021_779321
crossref_primary_10_3390_w13121713
crossref_primary_10_1016_j_watres_2025_123730
crossref_primary_10_1007_s00203_021_02697_6
crossref_primary_10_1016_j_jhazmat_2024_135890
crossref_primary_10_1016_j_aquatox_2025_107242
crossref_primary_10_1007_s10661_025_13636_z
crossref_primary_10_1016_j_watres_2021_117054
crossref_primary_10_1016_j_envpol_2024_125246
crossref_primary_10_1016_j_hal_2025_102914
crossref_primary_10_1016_j_envpol_2022_120546
crossref_primary_10_1016_j_marchem_2024_104402
crossref_primary_10_1002_etc_5893
crossref_primary_10_1016_j_psep_2025_107532
crossref_primary_10_1016_j_jhazmat_2023_133279
crossref_primary_10_1007_s11270_022_05531_x
crossref_primary_10_1016_j_ecoenv_2021_112496
crossref_primary_10_3390_w13010056
crossref_primary_10_1016_j_envpol_2020_114593
crossref_primary_10_1016_j_trac_2023_117477
crossref_primary_10_1016_j_ecoenv_2025_117813
crossref_primary_10_1007_s11356_020_10388_w
crossref_primary_10_1016_j_jclepro_2024_142834
crossref_primary_10_1016_j_envres_2021_112287
crossref_primary_10_1016_j_marpolbul_2025_117758
crossref_primary_10_1007_s11356_020_07679_7
crossref_primary_10_1016_j_envpol_2020_115576
crossref_primary_10_1016_j_chemosphere_2021_133333
crossref_primary_10_1016_j_envpol_2022_119454
crossref_primary_10_1016_j_cbpc_2022_109426
crossref_primary_10_1016_j_chemosphere_2023_139476
crossref_primary_10_1007_s10653_023_01566_z
crossref_primary_10_1016_j_envpol_2019_01_114
crossref_primary_10_1016_j_jwpe_2025_108714
crossref_primary_10_1016_j_jhazmat_2025_138260
crossref_primary_10_3389_fmicb_2021_666100
crossref_primary_10_1007_s10646_022_02536_4
crossref_primary_10_1007_s11356_021_17198_8
crossref_primary_10_1016_j_jhazmat_2021_127488
crossref_primary_10_1016_j_aquatox_2021_106049
crossref_primary_10_3390_w17020201
crossref_primary_10_1016_j_jhazmat_2020_124536
crossref_primary_10_1016_j_scitotenv_2021_147934
crossref_primary_10_1016_j_chemosphere_2022_134530
crossref_primary_10_1016_j_trac_2024_117854
crossref_primary_10_1016_j_trac_2024_117611
crossref_primary_10_1016_j_envpol_2023_121611
crossref_primary_10_1016_j_scitotenv_2023_164312
crossref_primary_10_1016_j_envpol_2023_122702
crossref_primary_10_1016_j_envres_2021_112179
crossref_primary_10_1016_j_scitotenv_2025_180366
crossref_primary_10_3390_w16162270
crossref_primary_10_1016_j_watres_2023_119815
crossref_primary_10_1016_j_scitotenv_2020_136767
crossref_primary_10_1016_j_watres_2022_118430
crossref_primary_10_1016_j_scitotenv_2022_154571
crossref_primary_10_1155_2022_1234078
crossref_primary_10_1186_s12951_024_02777_x
crossref_primary_10_1007_s10311_023_01564_8
crossref_primary_10_3390_nano12224077
crossref_primary_10_1016_j_jenvman_2023_118982
crossref_primary_10_1039_D4EN00559G
crossref_primary_10_1016_j_envpol_2020_114425
crossref_primary_10_1016_j_chemosphere_2024_141644
crossref_primary_10_3390_ijms23073583
crossref_primary_10_1007_s11356_022_21393_6
crossref_primary_10_1016_j_chemosphere_2024_142854
crossref_primary_10_1016_j_scitotenv_2022_153350
crossref_primary_10_1016_j_envpol_2022_120354
crossref_primary_10_3103_S0096392521040076
crossref_primary_10_1016_j_jhazmat_2024_134888
crossref_primary_10_1016_j_envpol_2019_113604
crossref_primary_10_3390_w12092650
crossref_primary_10_1016_j_scitotenv_2019_02_132
crossref_primary_10_3390_toxics9020041
crossref_primary_10_1007_s11783_021_1441_3
crossref_primary_10_1016_j_jhazmat_2024_133438
crossref_primary_10_1016_j_jenvman_2023_118971
crossref_primary_10_1016_j_marpolbul_2021_113197
crossref_primary_10_1016_j_envpol_2024_124084
crossref_primary_10_1016_j_jhazmat_2020_124685
crossref_primary_10_1016_j_envpol_2020_114559
crossref_primary_10_3390_nano15020146
crossref_primary_10_3389_fpls_2022_1100291
crossref_primary_10_1016_j_scitotenv_2023_165727
crossref_primary_10_1016_j_envpol_2023_121628
crossref_primary_10_1016_j_marpolbul_2022_113809
crossref_primary_10_1016_j_aquatox_2022_106234
crossref_primary_10_1007_s10661_023_11701_z
crossref_primary_10_1016_j_watres_2024_123002
crossref_primary_10_3390_microorganisms10122400
crossref_primary_10_1016_j_jhazmat_2025_139671
crossref_primary_10_1016_j_ecoenv_2025_117685
crossref_primary_10_1007_s10452_021_09834_9
crossref_primary_10_1016_j_ecoenv_2023_115702
crossref_primary_10_1016_j_isci_2023_106833
crossref_primary_10_1016_j_scitotenv_2019_135979
crossref_primary_10_1016_j_envint_2021_106504
crossref_primary_10_1016_j_scitotenv_2021_146919
crossref_primary_10_1016_j_jclepro_2019_02_180
crossref_primary_10_1016_j_chemosphere_2023_138776
crossref_primary_10_3390_d16010070
crossref_primary_10_1016_j_jhazmat_2021_126591
crossref_primary_10_1016_j_scitotenv_2020_136947
crossref_primary_10_1016_j_apsoil_2022_104680
crossref_primary_10_1016_j_jhazmat_2020_123496
crossref_primary_10_1016_j_marpolbul_2019_110525
crossref_primary_10_1016_j_marenvres_2025_107007
crossref_primary_10_1016_j_porgcoat_2024_108824
crossref_primary_10_1016_j_scitotenv_2023_161869
crossref_primary_10_1016_j_marenvres_2025_107005
crossref_primary_10_1016_j_scitotenv_2024_178003
crossref_primary_10_1007_s10452_025_10199_6
crossref_primary_10_1016_j_scitotenv_2022_161375
crossref_primary_10_1007_s11270_023_06062_9
crossref_primary_10_1007_s11356_021_17545_9
crossref_primary_10_1021_acs_jpcb_5c00416
crossref_primary_10_1016_j_ecoenv_2022_114102
crossref_primary_10_1016_j_scitotenv_2025_179868
crossref_primary_10_1016_j_aquatox_2023_106638
crossref_primary_10_1016_j_envpol_2020_115033
crossref_primary_10_1016_j_jhazmat_2021_125374
crossref_primary_10_1016_j_envpol_2021_117950
crossref_primary_10_1016_j_jhazmat_2020_124232
crossref_primary_10_1016_j_scitotenv_2024_177127
crossref_primary_10_1016_j_scitotenv_2019_133650
crossref_primary_10_1016_j_scitotenv_2024_176392
crossref_primary_10_1002_smll_202005834
crossref_primary_10_1016_j_scitotenv_2023_162950
crossref_primary_10_1016_j_jhazmat_2019_121620
crossref_primary_10_1016_j_chemosphere_2020_126914
crossref_primary_10_1016_j_scitotenv_2022_153828
crossref_primary_10_1111_brv_13164
crossref_primary_10_1016_j_marpolbul_2020_111074
crossref_primary_10_3390_separations12040082
crossref_primary_10_1016_j_scitotenv_2024_176164
crossref_primary_10_1016_j_envpol_2019_04_093
crossref_primary_10_1016_j_scitotenv_2020_143265
crossref_primary_10_1016_j_ecoenv_2024_117076
crossref_primary_10_1016_j_envpol_2020_116147
crossref_primary_10_1016_j_aquatox_2023_106609
crossref_primary_10_1016_j_scitotenv_2021_152564
crossref_primary_10_1016_j_scitotenv_2023_169044
crossref_primary_10_1002_appl_202200124
crossref_primary_10_1016_j_marpolbul_2022_114535
crossref_primary_10_1016_j_jwpe_2021_102291
crossref_primary_10_1016_j_scitotenv_2021_152562
crossref_primary_10_1016_j_envres_2021_111243
crossref_primary_10_1016_j_jhazmat_2021_127529
crossref_primary_10_1016_j_algal_2021_102289
crossref_primary_10_1016_j_scitotenv_2023_162414
crossref_primary_10_1016_j_scitotenv_2023_163984
crossref_primary_10_1007_s00425_023_04069_4
crossref_primary_10_1016_j_aquatox_2025_107257
crossref_primary_10_1007_s11783_024_1809_2
crossref_primary_10_1016_j_aquatox_2023_106725
crossref_primary_10_1016_j_rsma_2025_104025
crossref_primary_10_1016_j_jhazmat_2025_137344
crossref_primary_10_1016_j_scitotenv_2023_163608
crossref_primary_10_1016_j_chemosphere_2023_140760
crossref_primary_10_1016_j_watres_2020_116370
crossref_primary_10_1016_j_envint_2021_106842
crossref_primary_10_1016_j_algal_2021_102296
crossref_primary_10_1051_bioconf_202410400024
crossref_primary_10_1039_D0EN00373E
crossref_primary_10_1016_j_envpol_2020_114268
crossref_primary_10_1016_j_envres_2022_113777
crossref_primary_10_1080_1354750X_2020_1863470
crossref_primary_10_1016_j_envpol_2020_114385
crossref_primary_10_3390_toxics12040254
crossref_primary_10_1016_j_chemosphere_2022_137182
crossref_primary_10_3390_toxins13040293
crossref_primary_10_1016_j_marpolbul_2021_112379
crossref_primary_10_1039_D2EN00204C
crossref_primary_10_1016_j_ecoenv_2023_114834
crossref_primary_10_3390_polym14122450
crossref_primary_10_1016_j_envpol_2025_126178
crossref_primary_10_1016_j_scitotenv_2024_176074
crossref_primary_10_1016_j_jhazmat_2024_133952
crossref_primary_10_1016_j_gr_2021_07_010
crossref_primary_10_1016_j_scitotenv_2023_163842
crossref_primary_10_1016_j_envres_2021_112598
crossref_primary_10_1016_j_resconrec_2022_106503
crossref_primary_10_1016_j_envpol_2021_117626
crossref_primary_10_1080_26896583_2024_2370715
crossref_primary_10_1016_j_envpol_2020_114274
crossref_primary_10_1016_j_jes_2020_06_033
crossref_primary_10_1007_s11356_022_23278_0
crossref_primary_10_1007_s11270_024_07684_3
crossref_primary_10_3390_nano11102471
crossref_primary_10_1002_lno_12701
crossref_primary_10_1016_j_chemosphere_2021_130017
crossref_primary_10_1016_j_chemosphere_2023_140541
crossref_primary_10_1016_j_scitotenv_2020_139083
crossref_primary_10_1002_wer_11070
crossref_primary_10_3389_fenvs_2020_00131
crossref_primary_10_1016_j_scitotenv_2021_149180
crossref_primary_10_1016_j_chemosphere_2020_126705
crossref_primary_10_3389_fenvs_2022_928247
Cites_doi 10.1016/j.aquatox.2014.05.014
10.1016/j.scitotenv.2018.03.176
10.1002/etc.445
10.1073/pnas.1606615113
10.1016/j.envpol.2016.06.036
10.1016/j.scitotenv.2018.04.257
10.1021/acs.est.5b00492
10.1016/j.chemosphere.2015.06.020
10.1016/j.pestbp.2007.11.009
10.1021/acs.est.7b05559
10.1021/acs.est.7b04512
10.1016/j.envpol.2016.06.074
10.1016/j.ecoenv.2015.07.011
10.1021/es5036317
10.1126/science.1260352
10.1021/es503001d
10.1021/acs.est.7b02219
10.1021/nl0722929
10.1021/acs.est.6b01187
10.1016/j.scitotenv.2016.03.164
10.1016/j.envpol.2016.05.006
10.1016/j.watres.2015.02.012
10.1016/j.envpol.2017.01.015
10.1021/es201811s
10.1016/j.chemosphere.2016.12.074
10.1021/jp1054759
10.1016/j.aquatox.2013.01.018
10.1016/j.aquatox.2017.06.008
10.1016/j.aquatox.2008.11.014
10.1038/s41559-017-0116
10.1016/j.chemosphere.2017.02.024
10.1016/j.aquatox.2010.05.018
10.1016/j.envpol.2015.04.023
10.1021/acs.est.5b05905
10.1021/sc400103x
10.1021/acs.est.6b01441
10.1016/j.scitotenv.2017.01.190
10.1021/acs.est.7b03331
10.1016/j.envpol.2018.01.024
10.1016/j.envint.2009.10.010
10.1016/j.cej.2012.12.015
10.1016/j.envpol.2017.01.025
10.1029/2006WR005613
10.1016/j.envpol.2014.02.006
10.1016/j.hal.2014.05.015
10.1126/science.aad6359
10.1016/j.aquatox.2015.12.002
10.1016/j.envpol.2016.11.005
10.1016/j.marenvres.2009.05.002
10.1016/j.envpol.2017.05.047
10.1016/j.marpolbul.2015.04.007
10.1021/acs.est.7b06615
10.1016/j.ecolind.2016.12.038
10.1021/es303303g
10.1021/acs.est.6b05812
10.1021/acs.est.7b01541
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2018.05.170
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 68
ExternalDocumentID 29860145
10_1016_j_chemosphere_2018_05_170
S0045653518310270
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c410t-4c2b18c87d57878ef10e917e4fe3640c897ed5079d413a0fc5706329a4861f9a3
ISICitedReferencesCount 507
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441999400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-6535
1879-1298
IngestDate Thu Oct 02 11:06:19 EDT 2025
Wed Oct 01 13:39:02 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Tue Nov 18 21:16:43 EST 2025
Sat Nov 29 03:50:58 EST 2025
Fri Feb 23 02:32:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phytoplankton
Stimulation
Microplastics
Photosynthetic activity
Aggregate
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c410t-4c2b18c87d57878ef10e917e4fe3640c897ed5079d413a0fc5706329a4861f9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8298-0350
PMID 29860145
PQID 2049937552
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2116919602
proquest_miscellaneous_2049937552
pubmed_primary_29860145
crossref_citationtrail_10_1016_j_chemosphere_2018_05_170
crossref_primary_10_1016_j_chemosphere_2018_05_170
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_05_170
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Browne, Crump, Niven, Teuten, Tonkin, Galloway, Thompson (bib10) 2011; 45
Cincinelli, Scopetani, Chelazzi, Lombardini, Martellini, Katsoyiannis, Fossi, Corsolini (bib15) 2017; 175
Guven, Gokdag, Jovanovic, Kideys (bib22) 2017; 223
Redondo-Hasselerharm, Falahudin, Peeters, Koelmans (bib43) 2018
Koelmans, Besseling, Foekema, Kooi, Mintenig, Ossendorp, Redondo-Hasselerharm, Verschoor, van Wezel, Scheffer (bib32) 2017; 51
Ward, Kach (bib53) 2009; 68
Špoljar, Zhang, Dražina, Zhao, Lajtner, Radonić (bib46) 2017; 75
Besseling, Foekema, Van Franeker, Leopold, Kuhn, Bravo Rebolledo, Hesse, Mielke, IJzer, Kamminga, Koelmans (bib7) 2015; 95
Gigault, Halle, Baudrimont, Pascal, Gauffre, Phi, Hadri, Grassl, Reynaud (bib20) 2018; 235
Lagarde, Olivier, Zanella, Daniel, Hiard, Caruso (bib34) 2016; 215
Hong, Hu, Li (bib26) 2008; 90
Hadiyanto, Elmore, Van Gerven, Stankiewicz (bib23) 2013; 217
Bergami, Pugnalini, Vannuccini, Manfra, Faleri, Savorelli, Dawson, Corsi (bib5) 2017; 189
Long, Paul-Pont, Hegaret, Moriceau, Lambert, Huvet, Soudant (bib38) 2017; 228
Su, Xue, Li, Yang, Kolandhasamy, Li, Shi (bib47) 2016; 216
Leroueil, Berry, Duthie, Han, Rotello, McNerny, Baker, Orr, Banaszak Holl (bib37) 2008; 8
Chen, Mao, Kirumba, Jiang, Manefield, He (bib12) 2015; 122
Govindjee, Papageorgiou (bib21) 2004
Hong, Hu, Xie, Sakoda, Sagehashi, Li (bib27) 2009; 91
Zhang, Gong, Lv, Xiong, Wu (bib58) 2015; 204
Quigg, Chin, Chen, Zhang, Jiang, Miao, Schwehr, Xu, Santschi (bib42) 2013; 1
Galloway, Cole, Lewis (bib19) 2017; 1
Amado, Monserrat (bib3) 2010; 36
Hale (bib24) 2018
Yonkos, Friedel, Perez-Reyes, Ghosal, Arthur (bib55) 2014; 48
Alimi, Farner Budarz, Hernandez, Tufenkji (bib1) 2018
Eerkes-Medrano, Thompson, Aldridge (bib17) 2015; 75
Hondzo, Al-Homoud (bib25) 2007; 43
Alomar, Deudero (bib2) 2017; 223
Bergmann, Wirzberger, Krumpen, Lorenz, Primpke, Tekman, Gerdts (bib6) 2017; 51
Lechner, Keckeis, Lumesberger-Loisl, Zens, Krusch, Tritthart, Glas, Schludermann (bib35) 2014; 188
Tsai, Uzun, Karanfil, Chow (bib49) 2017; 51
Wang, Peng, Tan, Gao, Zhan, Chen, Cai (bib51) 2017; 171
Yoshida, Hiraga, Takehana, Taniguchi, Yamaj, Maeda, Toyohara, Miyamoto, Kimura, Oda (bib56) 2016; 351
Pakrashi, Dalai, Prathna, Trivedi, Myneni, Raichur, Chandrasekaran, Mukherjee (bib40) 2013; 132–133
Chen, Powell, Mortimer, Ke (bib13) 2012; 46
Besseling, Wang, Lurling, Koelmans (bib8) 2014; 48
Qian, Yu, Sun, Xie, Liu, Fu (bib41) 2010; 99
Song, Zhang, Li, Chen, Zhang (bib45) 2018; 636
Lenz, Enders, Nielsen (bib36) 2016; 113
Watts, Urbina, Goodhead, Moger, Lewis, Galloway (bib54) 2016; 50
Wang, Wang, Hu, Chang, Bi, Hu (bib50) 2015; 141
Wang, Zhu, Lao, Lv, Tao, Huang, Wang, Zhou, Cai (bib52) 2016; 565
Jeong, Won, Kang, Lee, Hwang, Hwang, Zhou, Souissi, Lee, Lee (bib30) 2016; 50
Cherchi, Chernenko, Diem, Gu (bib14) 2011; 30
Erni-Cassola, Gibson, Thompson, Christie-Oleza (bib18) 2017; 51
Anderson, Park, Palace (bib4) 2016; 218
Cole, Lindeque, Fileman, Clark, Lewis, Halsband, Galloway (bib16) 2016; 50
Canniff, Hoang (bib11) 2018; 633
Klein, Worch, Knepper (bib31) 2015; 49
Kottuparambil, Kim, Choi, Kim, Park, Park, Shin, Han (bib33) 2014; 155
Tian, Zhou, Sun, Cai, Xu, An, Duan (bib48) 2014; 37
Bhattacharya, Lin, Turner, Ke (bib9) 2010; 114
McDevitt, Criddle, Morse, Hale, Bott, Rochman (bib39) 2017; 51
Jambeck, Geyer, Wilcox, Sieglers, Perryman, Andrady, Narayan, Law (bib29) 2015; 347
Zhang, Chen, Wang, Tan (bib57) 2017; 220
Sjollema, Redondo-Hasselerharm, Leslie, Kraak, Vethaak (bib44) 2016; 170
Horton, Walton, Spurgeon, Lahive, Svendsen (bib28) 2017; 586
Qian (10.1016/j.chemosphere.2018.05.170_bib41) 2010; 99
Cincinelli (10.1016/j.chemosphere.2018.05.170_bib15) 2017; 175
Ward (10.1016/j.chemosphere.2018.05.170_bib53) 2009; 68
Besseling (10.1016/j.chemosphere.2018.05.170_bib7) 2015; 95
Lechner (10.1016/j.chemosphere.2018.05.170_bib35) 2014; 188
Klein (10.1016/j.chemosphere.2018.05.170_bib31) 2015; 49
Watts (10.1016/j.chemosphere.2018.05.170_bib54) 2016; 50
Kottuparambil (10.1016/j.chemosphere.2018.05.170_bib33) 2014; 155
Pakrashi (10.1016/j.chemosphere.2018.05.170_bib40) 2013; 132–133
Hong (10.1016/j.chemosphere.2018.05.170_bib27) 2009; 91
Lenz (10.1016/j.chemosphere.2018.05.170_bib36) 2016; 113
Chen (10.1016/j.chemosphere.2018.05.170_bib12) 2015; 122
McDevitt (10.1016/j.chemosphere.2018.05.170_bib39) 2017; 51
Wang (10.1016/j.chemosphere.2018.05.170_bib51) 2017; 171
Horton (10.1016/j.chemosphere.2018.05.170_bib28) 2017; 586
Zhang (10.1016/j.chemosphere.2018.05.170_bib58) 2015; 204
Canniff (10.1016/j.chemosphere.2018.05.170_bib11) 2018; 633
Cole (10.1016/j.chemosphere.2018.05.170_bib16) 2016; 50
Guven (10.1016/j.chemosphere.2018.05.170_bib22) 2017; 223
Chen (10.1016/j.chemosphere.2018.05.170_bib13) 2012; 46
Gigault (10.1016/j.chemosphere.2018.05.170_bib20) 2018; 235
Besseling (10.1016/j.chemosphere.2018.05.170_bib8) 2014; 48
Yonkos (10.1016/j.chemosphere.2018.05.170_bib55) 2014; 48
Hale (10.1016/j.chemosphere.2018.05.170_bib24) 2018
Long (10.1016/j.chemosphere.2018.05.170_bib38) 2017; 228
Wang (10.1016/j.chemosphere.2018.05.170_bib50) 2015; 141
Erni-Cassola (10.1016/j.chemosphere.2018.05.170_bib18) 2017; 51
Cherchi (10.1016/j.chemosphere.2018.05.170_bib14) 2011; 30
Bergami (10.1016/j.chemosphere.2018.05.170_bib5) 2017; 189
Alomar (10.1016/j.chemosphere.2018.05.170_bib2) 2017; 223
Quigg (10.1016/j.chemosphere.2018.05.170_bib42) 2013; 1
Hong (10.1016/j.chemosphere.2018.05.170_bib26) 2008; 90
Su (10.1016/j.chemosphere.2018.05.170_bib47) 2016; 216
Anderson (10.1016/j.chemosphere.2018.05.170_bib4) 2016; 218
Song (10.1016/j.chemosphere.2018.05.170_bib45) 2018; 636
Govindjee (10.1016/j.chemosphere.2018.05.170_bib21) 2004
Špoljar (10.1016/j.chemosphere.2018.05.170_bib46) 2017; 75
Zhang (10.1016/j.chemosphere.2018.05.170_bib57) 2017; 220
Eerkes-Medrano (10.1016/j.chemosphere.2018.05.170_bib17) 2015; 75
Hadiyanto (10.1016/j.chemosphere.2018.05.170_bib23) 2013; 217
Tsai (10.1016/j.chemosphere.2018.05.170_bib49) 2017; 51
Amado (10.1016/j.chemosphere.2018.05.170_bib3) 2010; 36
Redondo-Hasselerharm (10.1016/j.chemosphere.2018.05.170_bib43) 2018
Bergmann (10.1016/j.chemosphere.2018.05.170_bib6) 2017; 51
Jambeck (10.1016/j.chemosphere.2018.05.170_bib29) 2015; 347
Sjollema (10.1016/j.chemosphere.2018.05.170_bib44) 2016; 170
Jeong (10.1016/j.chemosphere.2018.05.170_bib30) 2016; 50
Tian (10.1016/j.chemosphere.2018.05.170_bib48) 2014; 37
Galloway (10.1016/j.chemosphere.2018.05.170_bib19) 2017; 1
Hondzo (10.1016/j.chemosphere.2018.05.170_bib25) 2007; 43
Browne (10.1016/j.chemosphere.2018.05.170_bib10) 2011; 45
Koelmans (10.1016/j.chemosphere.2018.05.170_bib32) 2017; 51
Leroueil (10.1016/j.chemosphere.2018.05.170_bib37) 2008; 8
Bhattacharya (10.1016/j.chemosphere.2018.05.170_bib9) 2010; 114
Lagarde (10.1016/j.chemosphere.2018.05.170_bib34) 2016; 215
Yoshida (10.1016/j.chemosphere.2018.05.170_bib56) 2016; 351
Alimi (10.1016/j.chemosphere.2018.05.170_bib1) 2018
Wang (10.1016/j.chemosphere.2018.05.170_bib52) 2016; 565
References_xml – year: 2018
  ident: bib1
  article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport
  publication-title: Environ. Sci. Technol.
– volume: 223
  start-page: 286
  year: 2017
  end-page: 294
  ident: bib22
  article-title: Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish
  publication-title: Environ. Pollut.
– volume: 132–133
  start-page: 34
  year: 2013
  end-page: 45
  ident: bib40
  article-title: Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations
  publication-title: Aquat. Toxicol.
– volume: 46
  start-page: 12178
  year: 2012
  end-page: 12185
  ident: bib13
  article-title: Adaptive interactions between zinc oxide nanoparticles and Chlorella sp
  publication-title: Environ. Sci. Technol.
– volume: 113
  start-page: E4121
  year: 2016
  end-page: E4122
  ident: bib36
  article-title: Microplastic exposure studies should be environmentally realistic
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 51
  start-page: 13641
  year: 2017
  end-page: 13648
  ident: bib18
  article-title: Lost, but found with nile red: a novel method for detecting and quantifying small microplastics (1 mm to 20 mum) in environmental samples
  publication-title: Environ. Sci. Technol.
– volume: 204
  start-page: 117
  year: 2015
  end-page: 123
  ident: bib58
  article-title: Accumulation of floating microplastics behind the three gorges dam
  publication-title: Environ. Pollut.
– volume: 586
  start-page: 127
  year: 2017
  end-page: 141
  ident: bib28
  article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities
  publication-title: Sci. Total Environ.
– volume: 45
  start-page: 9175
  year: 2011
  end-page: 9179
  ident: bib10
  article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks
  publication-title: Environ. Sci. Technol.
– year: 2018
  ident: bib24
  article-title: Are the risks from microplastics truly trivial?
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 11000
  year: 2017
  end-page: 11010
  ident: bib6
  article-title: High quantities of microplastic in arctic deep-sea sediments from the HAUSGARTEN observatory
  publication-title: Environ. Sci. Technol.
– volume: 95
  start-page: 248
  year: 2015
  end-page: 252
  ident: bib7
  article-title: Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae
  publication-title: Mar. Pollut. Bull.
– volume: 189
  start-page: 159
  year: 2017
  end-page: 169
  ident: bib5
  article-title: Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana
  publication-title: Aquat. Toxicol.
– volume: 347
  start-page: 768
  year: 2015
  end-page: 771
  ident: bib29
  article-title: Plastic waste inputs from land intothe ocean
  publication-title: Science
– volume: 75
  start-page: 145
  year: 2017
  end-page: 154
  ident: bib46
  article-title: Development of submerged macrophyte and epiphyton in a flow-through system: assessment and modelling predictions in interconnected reservoirs
  publication-title: Ecol. Indicat.
– volume: 36
  start-page: 226
  year: 2010
  end-page: 235
  ident: bib3
  article-title: Oxidative stress generation by microcystins in aquatic animals: why and how
  publication-title: Environ. Int.
– volume: 351
  start-page: 1196
  year: 2016
  end-page: 1199
  ident: bib56
  article-title: A bacterium that degrades and assimilates poly(ethylene terephthalate)
  publication-title: Science
– volume: 43
  year: 2007
  ident: bib25
  article-title: Model development and verification for mass transport to Escherichia coli cells in a turbulent flow
  publication-title: Water Resour. Res.
– year: 2004
  ident: bib21
  article-title: Chlorophyll a Fluorescence: a Signature of Photosynthesis
– volume: 223
  start-page: 223
  year: 2017
  end-page: 229
  ident: bib2
  article-title: Evidence of microplastic ingestion in the shark Galeus melastomus Rafinesque, 1810 in the continental shelf off the western Mediterranean Sea
  publication-title: Environ. Pollut.
– volume: 1
  start-page: 116
  year: 2017
  ident: bib19
  article-title: Interactions of microplastic debris throughout the marine ecosystem
  publication-title: Nat. Ecol. Evol.
– volume: 216
  start-page: 711
  year: 2016
  end-page: 719
  ident: bib47
  article-title: Microplastics in Taihu Lake, China
  publication-title: Environ. Pollut.
– volume: 235
  start-page: 1030
  year: 2018
  end-page: 1034
  ident: bib20
  article-title: Current opinion: what is a nanoplastic?
  publication-title: Environ. Pollut.
– volume: 8
  start-page: 420
  year: 2008
  end-page: 424
  ident: bib37
  article-title: Wide varieties of cationic nanoparticles induce defects in supported lipid bilayersnls
  publication-title: Nano Lett.
– volume: 30
  start-page: 861
  year: 2011
  end-page: 869
  ident: bib14
  article-title: Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization
  publication-title: Environ. Toxicol. Chem.
– volume: 51
  start-page: 11513
  year: 2017
  end-page: 11519
  ident: bib32
  article-title: Risks of plastic debris: unravelling fact, opinion, perception, and belief
  publication-title: Environ. Sci. Technol.
– volume: 217
  start-page: 231
  year: 2013
  end-page: 239
  ident: bib23
  article-title: Hydrodynamic evaluations in high rate algae pond (HRAP) design
  publication-title: Chem. Eng. J.
– volume: 565
  start-page: 818
  year: 2016
  end-page: 826
  ident: bib52
  article-title: TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum
  publication-title: Sci. Total Environ.
– volume: 141
  start-page: 34
  year: 2015
  end-page: 43
  ident: bib50
  article-title: The combined effects of UV-C radiation and H2O2 on Microcystis aeruginosa, a bloom-forming cyanobacterium
  publication-title: Chemosphere
– volume: 50
  start-page: 8849
  year: 2016
  end-page: 8857
  ident: bib30
  article-title: Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus)
  publication-title: Environ. Sci. Technol.
– volume: 171
  start-page: 248
  year: 2017
  end-page: 258
  ident: bib51
  article-title: Microplastics in the surface sediments from the Beijing River littoral zone: composition, abundance, surface textures and interaction with heavy metals
  publication-title: Chemosphere
– volume: 155
  start-page: 9
  year: 2014
  end-page: 14
  ident: bib33
  article-title: A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter
  publication-title: Aquat. Toxicol.
– volume: 122
  start-page: 126
  year: 2015
  end-page: 135
  ident: bib12
  article-title: Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 49
  start-page: 6070
  year: 2015
  end-page: 6076
  ident: bib31
  article-title: Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany
  publication-title: Environ. Sci. Technol.
– volume: 68
  start-page: 137
  year: 2009
  end-page: 142
  ident: bib53
  article-title: Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves
  publication-title: Mar. Environ. Res.
– volume: 633
  start-page: 500
  year: 2018
  end-page: 507
  ident: bib11
  article-title: Microplastic ingestion by Daphnia magna and its enhancement on algal growth
  publication-title: Sci. Total Environ.
– volume: 99
  start-page: 405
  year: 2010
  end-page: 412
  ident: bib41
  article-title: Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa
  publication-title: Aquat. Toxicol.
– volume: 37
  start-page: 153
  year: 2014
  end-page: 159
  ident: bib48
  article-title: Inhibitory effects of Chinese traditional herbs and herb-modified clays on the growth of harmful algae, Phaeocystis globosa and Prorocentrum donghaiense
  publication-title: Harmful Algae
– volume: 220
  start-page: 1282
  year: 2017
  end-page: 1288
  ident: bib57
  article-title: Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae
  publication-title: Environ. Pollut.
– volume: 1
  start-page: 686
  year: 2013
  end-page: 702
  ident: bib42
  article-title: Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter
  publication-title: ACS Sustain. Chem. Eng.
– volume: 188
  start-page: 177
  year: 2014
  end-page: 181
  ident: bib35
  article-title: The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe's second largest river
  publication-title: Environ. Pollut.
– volume: 51
  start-page: 8272
  year: 2017
  end-page: 8282
  ident: bib49
  article-title: Dynamic changes of disinfection byproduct precursors following exposures of Microcystis aeruginosa to wildfire ash solutions
  publication-title: Environ. Sci. Technol.
– volume: 218
  start-page: 269
  year: 2016
  end-page: 280
  ident: bib4
  article-title: Microplastics in aquatic environments: implications for Canadian ecosystems
  publication-title: Environ. Pollut.
– volume: 636
  start-page: 230
  year: 2018
  end-page: 239
  ident: bib45
  article-title: Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs
  publication-title: Sci. Total Environ.
– volume: 75
  start-page: 63
  year: 2015
  end-page: 82
  ident: bib17
  article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs
  publication-title: Water Res.
– volume: 228
  start-page: 454
  year: 2017
  end-page: 463
  ident: bib38
  article-title: Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation
  publication-title: Environ. Pollut.
– volume: 114
  start-page: 16556
  year: 2010
  end-page: 16561
  ident: bib9
  article-title: Physical adsorption of charged plastic nanoparticles Affects algal photosynthesis
  publication-title: J. Phys. Chem. C
– volume: 215
  start-page: 331
  year: 2016
  end-page: 339
  ident: bib34
  article-title: Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type
  publication-title: Environ. Pollut.
– volume: 51
  start-page: 6611
  year: 2017
  end-page: 6617
  ident: bib39
  article-title: Addressing the Issue of microplastics in the wake of the Microbead-Free Waters Act-A new standard can facilitate improved policy
  publication-title: Environ. Sci. Technol.
– volume: 170
  start-page: 259
  year: 2016
  end-page: 261
  ident: bib44
  article-title: Do plastic particles affect microalgal photosynthesis and growth?
  publication-title: Aquat. Toxicol.
– volume: 91
  start-page: 262
  year: 2009
  end-page: 269
  ident: bib27
  article-title: Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa
  publication-title: Aquat. Toxicol.
– volume: 50
  start-page: 5364
  year: 2016
  end-page: 5369
  ident: bib54
  article-title: Effect of microplastic on the gills of the shore crab Carcinus maenas
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 3239
  year: 2016
  end-page: 3246
  ident: bib16
  article-title: Microplastics alter the properties and sinking rates of zooplankton faecal pellets
  publication-title: Environ. Sci. Technol.
– year: 2018
  ident: bib43
  article-title: Microplastic effect thresholds for freshwater benthic macroinvertebrates
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 14195
  year: 2014
  end-page: 14202
  ident: bib55
  article-title: Microplastics in four estuarine rivers in the Chesapeake Bay, U.S.A
  publication-title: Environ. Sci. Technol.
– volume: 90
  start-page: 203
  year: 2008
  end-page: 212
  ident: bib26
  article-title: Growth and physiological responses of freshwater green alga Selenastrum capricornutum to allelochemical ethyl 2-methyl acetoacetate (EMA) under different initial algal densities
  publication-title: Pestic. Biochem. Physiol.
– volume: 48
  start-page: 12336
  year: 2014
  end-page: 12343
  ident: bib8
  article-title: Nanoplastic affects growth of S. obliquus and reproduction of D. magna
  publication-title: Environ. Sci. Technol.
– volume: 175
  start-page: 391
  year: 2017
  end-page: 400
  ident: bib15
  article-title: Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR
  publication-title: Chemosphere
– volume: 155
  start-page: 9
  year: 2014
  ident: 10.1016/j.chemosphere.2018.05.170_bib33
  article-title: A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2014.05.014
– volume: 633
  start-page: 500
  year: 2018
  ident: 10.1016/j.chemosphere.2018.05.170_bib11
  article-title: Microplastic ingestion by Daphnia magna and its enhancement on algal growth
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.176
– volume: 30
  start-page: 861
  year: 2011
  ident: 10.1016/j.chemosphere.2018.05.170_bib14
  article-title: Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.445
– volume: 113
  start-page: E4121
  year: 2016
  ident: 10.1016/j.chemosphere.2018.05.170_bib36
  article-title: Microplastic exposure studies should be environmentally realistic
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1606615113
– volume: 216
  start-page: 711
  year: 2016
  ident: 10.1016/j.chemosphere.2018.05.170_bib47
  article-title: Microplastics in Taihu Lake, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.06.036
– year: 2018
  ident: 10.1016/j.chemosphere.2018.05.170_bib43
  article-title: Microplastic effect thresholds for freshwater benthic macroinvertebrates
  publication-title: Environ. Sci. Technol.
– volume: 636
  start-page: 230
  year: 2018
  ident: 10.1016/j.chemosphere.2018.05.170_bib45
  article-title: Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.257
– volume: 49
  start-page: 6070
  year: 2015
  ident: 10.1016/j.chemosphere.2018.05.170_bib31
  article-title: Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00492
– volume: 141
  start-page: 34
  year: 2015
  ident: 10.1016/j.chemosphere.2018.05.170_bib50
  article-title: The combined effects of UV-C radiation and H2O2 on Microcystis aeruginosa, a bloom-forming cyanobacterium
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.06.020
– volume: 90
  start-page: 203
  year: 2008
  ident: 10.1016/j.chemosphere.2018.05.170_bib26
  article-title: Growth and physiological responses of freshwater green alga Selenastrum capricornutum to allelochemical ethyl 2-methyl acetoacetate (EMA) under different initial algal densities
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2007.11.009
– year: 2018
  ident: 10.1016/j.chemosphere.2018.05.170_bib1
  article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05559
– volume: 51
  start-page: 13641
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib18
  article-title: Lost, but found with nile red: a novel method for detecting and quantifying small microplastics (1 mm to 20 mum) in environmental samples
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04512
– volume: 218
  start-page: 269
  year: 2016
  ident: 10.1016/j.chemosphere.2018.05.170_bib4
  article-title: Microplastics in aquatic environments: implications for Canadian ecosystems
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.06.074
– volume: 122
  start-page: 126
  year: 2015
  ident: 10.1016/j.chemosphere.2018.05.170_bib12
  article-title: Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2015.07.011
– volume: 48
  start-page: 14195
  year: 2014
  ident: 10.1016/j.chemosphere.2018.05.170_bib55
  article-title: Microplastics in four estuarine rivers in the Chesapeake Bay, U.S.A
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5036317
– volume: 347
  start-page: 768
  year: 2015
  ident: 10.1016/j.chemosphere.2018.05.170_bib29
  article-title: Plastic waste inputs from land intothe ocean
  publication-title: Science
  doi: 10.1126/science.1260352
– volume: 48
  start-page: 12336
  year: 2014
  ident: 10.1016/j.chemosphere.2018.05.170_bib8
  article-title: Nanoplastic affects growth of S. obliquus and reproduction of D. magna
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503001d
– volume: 51
  start-page: 11513
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib32
  article-title: Risks of plastic debris: unravelling fact, opinion, perception, and belief
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02219
– volume: 8
  start-page: 420
  year: 2008
  ident: 10.1016/j.chemosphere.2018.05.170_bib37
  article-title: Wide varieties of cationic nanoparticles induce defects in supported lipid bilayersnls
  publication-title: Nano Lett.
  doi: 10.1021/nl0722929
– volume: 50
  start-page: 5364
  year: 2016
  ident: 10.1016/j.chemosphere.2018.05.170_bib54
  article-title: Effect of microplastic on the gills of the shore crab Carcinus maenas
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b01187
– volume: 565
  start-page: 818
  year: 2016
  ident: 10.1016/j.chemosphere.2018.05.170_bib52
  article-title: TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.03.164
– volume: 215
  start-page: 331
  year: 2016
  ident: 10.1016/j.chemosphere.2018.05.170_bib34
  article-title: Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.05.006
– volume: 75
  start-page: 63
  year: 2015
  ident: 10.1016/j.chemosphere.2018.05.170_bib17
  article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.02.012
– volume: 223
  start-page: 223
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib2
  article-title: Evidence of microplastic ingestion in the shark Galeus melastomus Rafinesque, 1810 in the continental shelf off the western Mediterranean Sea
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.01.015
– volume: 45
  start-page: 9175
  year: 2011
  ident: 10.1016/j.chemosphere.2018.05.170_bib10
  article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201811s
– volume: 171
  start-page: 248
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib51
  article-title: Microplastics in the surface sediments from the Beijing River littoral zone: composition, abundance, surface textures and interaction with heavy metals
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.12.074
– volume: 114
  start-page: 16556
  year: 2010
  ident: 10.1016/j.chemosphere.2018.05.170_bib9
  article-title: Physical adsorption of charged plastic nanoparticles Affects algal photosynthesis
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1054759
– volume: 132–133
  start-page: 34
  year: 2013
  ident: 10.1016/j.chemosphere.2018.05.170_bib40
  article-title: Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2013.01.018
– volume: 189
  start-page: 159
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib5
  article-title: Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2017.06.008
– volume: 91
  start-page: 262
  year: 2009
  ident: 10.1016/j.chemosphere.2018.05.170_bib27
  article-title: Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2008.11.014
– volume: 1
  start-page: 116
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib19
  article-title: Interactions of microplastic debris throughout the marine ecosystem
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0116
– volume: 175
  start-page: 391
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib15
  article-title: Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.02.024
– volume: 99
  start-page: 405
  year: 2010
  ident: 10.1016/j.chemosphere.2018.05.170_bib41
  article-title: Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2010.05.018
– volume: 204
  start-page: 117
  year: 2015
  ident: 10.1016/j.chemosphere.2018.05.170_bib58
  article-title: Accumulation of floating microplastics behind the three gorges dam
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.04.023
– volume: 50
  start-page: 3239
  year: 2016
  ident: 10.1016/j.chemosphere.2018.05.170_bib16
  article-title: Microplastics alter the properties and sinking rates of zooplankton faecal pellets
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05905
– volume: 1
  start-page: 686
  year: 2013
  ident: 10.1016/j.chemosphere.2018.05.170_bib42
  article-title: Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/sc400103x
– volume: 50
  start-page: 8849
  year: 2016
  ident: 10.1016/j.chemosphere.2018.05.170_bib30
  article-title: Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b01441
– volume: 586
  start-page: 127
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib28
  article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.190
– volume: 51
  start-page: 11000
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib6
  article-title: High quantities of microplastic in arctic deep-sea sediments from the HAUSGARTEN observatory
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03331
– volume: 235
  start-page: 1030
  year: 2018
  ident: 10.1016/j.chemosphere.2018.05.170_bib20
  article-title: Current opinion: what is a nanoplastic?
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.01.024
– volume: 36
  start-page: 226
  year: 2010
  ident: 10.1016/j.chemosphere.2018.05.170_bib3
  article-title: Oxidative stress generation by microcystins in aquatic animals: why and how
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2009.10.010
– volume: 217
  start-page: 231
  year: 2013
  ident: 10.1016/j.chemosphere.2018.05.170_bib23
  article-title: Hydrodynamic evaluations in high rate algae pond (HRAP) design
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.12.015
– volume: 223
  start-page: 286
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib22
  article-title: Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.01.025
– volume: 43
  year: 2007
  ident: 10.1016/j.chemosphere.2018.05.170_bib25
  article-title: Model development and verification for mass transport to Escherichia coli cells in a turbulent flow
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR005613
– volume: 188
  start-page: 177
  year: 2014
  ident: 10.1016/j.chemosphere.2018.05.170_bib35
  article-title: The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe's second largest river
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2014.02.006
– year: 2004
  ident: 10.1016/j.chemosphere.2018.05.170_bib21
– volume: 37
  start-page: 153
  year: 2014
  ident: 10.1016/j.chemosphere.2018.05.170_bib48
  article-title: Inhibitory effects of Chinese traditional herbs and herb-modified clays on the growth of harmful algae, Phaeocystis globosa and Prorocentrum donghaiense
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2014.05.015
– volume: 351
  start-page: 1196
  year: 2016
  ident: 10.1016/j.chemosphere.2018.05.170_bib56
  article-title: A bacterium that degrades and assimilates poly(ethylene terephthalate)
  publication-title: Science
  doi: 10.1126/science.aad6359
– volume: 170
  start-page: 259
  year: 2016
  ident: 10.1016/j.chemosphere.2018.05.170_bib44
  article-title: Do plastic particles affect microalgal photosynthesis and growth?
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2015.12.002
– volume: 220
  start-page: 1282
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib57
  article-title: Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.11.005
– volume: 68
  start-page: 137
  year: 2009
  ident: 10.1016/j.chemosphere.2018.05.170_bib53
  article-title: Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves
  publication-title: Mar. Environ. Res.
  doi: 10.1016/j.marenvres.2009.05.002
– volume: 228
  start-page: 454
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib38
  article-title: Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.05.047
– volume: 95
  start-page: 248
  year: 2015
  ident: 10.1016/j.chemosphere.2018.05.170_bib7
  article-title: Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.04.007
– year: 2018
  ident: 10.1016/j.chemosphere.2018.05.170_bib24
  article-title: Are the risks from microplastics truly trivial?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b06615
– volume: 75
  start-page: 145
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib46
  article-title: Development of submerged macrophyte and epiphyton in a flow-through system: assessment and modelling predictions in interconnected reservoirs
  publication-title: Ecol. Indicat.
  doi: 10.1016/j.ecolind.2016.12.038
– volume: 46
  start-page: 12178
  year: 2012
  ident: 10.1016/j.chemosphere.2018.05.170_bib13
  article-title: Adaptive interactions between zinc oxide nanoparticles and Chlorella sp
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303303g
– volume: 51
  start-page: 6611
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib39
  article-title: Addressing the Issue of microplastics in the wake of the Microbead-Free Waters Act-A new standard can facilitate improved policy
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05812
– volume: 51
  start-page: 8272
  year: 2017
  ident: 10.1016/j.chemosphere.2018.05.170_bib49
  article-title: Dynamic changes of disinfection byproduct precursors following exposures of Microcystis aeruginosa to wildfire ash solutions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01541
SSID ssj0001659
Score 2.7047186
Snippet Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 59
SubjectTerms adverse effects
Aggregate
algae
aquatic environment
cell walls
Chlorella pyrenoidosa
dose response
Microplastics
oxidative stress
photosynthesis
Photosynthetic activity
Phytoplankton
plastics
polystyrenes
risk
Stimulation
thylakoids
Title Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period
URI https://dx.doi.org/10.1016/j.chemosphere.2018.05.170
https://www.ncbi.nlm.nih.gov/pubmed/29860145
https://www.proquest.com/docview/2049937552
https://www.proquest.com/docview/2116919602
Volume 208
WOSCitedRecordID wos000441999400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1298
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001659
  issn: 0045-6535
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6jq8XBONrfEyehHiZMsVpnNiIl6nqBGiUPnRSh4QiL3VYR0lCm1brf89d7KStpqLywEtUJXaS-n6x7853vyPkrZLSB60jcDSoD46vXYWUt8ppcXmpvWTIdFJK-izsdsVgIHuNxrzKhZmPwzQVNzcy_6-ihnMgbEyd_Qdx1zeFE_AbhA5HEDsctxJ872pRZPlYpT-RMWNiYmDLAhl5Nl5M0esMiuUvDMSDViVNM7oFesusS5NzAh8-RhJN9NEPMNWLK2Q4HmVrdT2RbSCbIjFBqama5MMV38IXVTpiL2aJtgskQsvUycasrRqYbZsjcjG65cj-BpcWs1XnBBN1mFs94frcCbhhJKkmXM8VR_kxl44pqGOnTksMbhZhc-XW9G48DdfH8fLvYXSeQPJVZgqQrFNqd79Gp-dnZ1G_M-i_y387WG0Md-Vt6ZUdsuuFXIom2T351Bl8rtdwFnBjONnXv0cOl5GBG56-SbPZZLmUGkz_EXloTQ96YiDzmDR0ukfut6uKf3vkbqekMF88Id_XQEQrENEioysgomsgek9XIEQRQlSl1ECIGghRA6Gn5Py0029_dGwhDif2mVs4fuxdMhGLcIjzu9AJczWY-dpPdCvw3VjIUA_BsJBDUImUm8Q8BM3Xk8oXAUukaj0jzTRL9QtC_ZijI0QNmZA-Dh73QsVECPfTgeR8n4hqEKPYstRjsZRxVIUjXkcr4x_hLSKXRzD--8Sru-aGqmWbTh8qSUVW5zS6ZASY26b7YSXdCISFm20q1dlsCo18VP059_7ShiFVlQxcaPPcQKN-c0-KALf8X27R-xV5sPz4XpNmMZnpN-ROPC9G08kB2QkH4sAi_A_hhse7
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytoplankton+response+to+polystyrene+microplastics%3A+Perspective+from+an+entire+growth+period&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Mao%2C+Yufeng&rft.au=Ai%2C+Hainan&rft.au=Chen%2C+Yi&rft.au=Zhang%2C+Zhenyu&rft.date=2018-10-01&rft.issn=0045-6535&rft.volume=208+p.59-68&rft.spage=59&rft.epage=68&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.05.170&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon