Hyperfast second-order local solvers for efficient statistically preconditioned distributed optimization
Statistical preconditioning enables fast methods for distributed large-scale empirical risk minimization problems. In this approach, multiple worker nodes compute gradients in parallel, which are then used by the central node to update the parameter by solving an auxiliary (preconditioned) smaller-s...
Saved in:
| Published in: | EURO journal on computational optimization Vol. 10; p. 100045 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
2022
Elsevier |
| Subjects: | |
| ISSN: | 2192-4406 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Statistical preconditioning enables fast methods for distributed large-scale empirical risk minimization problems. In this approach, multiple worker nodes compute gradients in parallel, which are then used by the central node to update the parameter by solving an auxiliary (preconditioned) smaller-scale optimization problem. The recently proposed Statistically Preconditioned Accelerated Gradient (SPAG) method [1] has complexity bounds superior to other such algorithms but requires an exact solution for computationally intensive auxiliary optimization problems at every iteration. In this paper, we propose an Inexact SPAG (InSPAG) and explicitly characterize the accuracy by which the corresponding auxiliary subproblem needs to be solved to guarantee the same convergence rate as the exact method. We build our results by first developing an inexact adaptive accelerated Bregman proximal gradient method for general optimization problems under relative smoothness and strong convexity assumptions, which may be of independent interest. Moreover, we explore the properties of the auxiliary problem in the InSPAG algorithm assuming Lipschitz third-order derivatives and strong convexity. For such problem class, we develop a linearly convergent Hyperfast second-order method and estimate the total complexity of the InSPAG method with hyperfast auxiliary problem solver. Finally, we illustrate the proposed method's practical efficiency by performing large-scale numerical experiments on logistic regression models. To the best of our knowledge, these are the first empirical results on implementing high-order methods on large-scale problems, as we work with data where the dimension is of the order of 3 million, and the number of samples is 700 million.
•Inexact Statistically Preconditioned Accelerated Gradient Method for large-scale distributed convex empirical risk minimization problems.•Hyperfast second-order algorithm for minimizing strongly convex functions with Lipschitz third-order derivatives.•Inexact adaptive accelerated Bregman proximal gradient method for minimization under relative smoothness and strong convexity assumptions.•Empirical evidence for the efficiency of tensor optimization methods for large-scale ERM problems. |
|---|---|
| AbstractList | Statistical preconditioning enables fast methods for distributed large-scale empirical risk minimization problems. In this approach, multiple worker nodes compute gradients in parallel, which are then used by the central node to update the parameter by solving an auxiliary (preconditioned) smaller-scale optimization problem. The recently proposed Statistically Preconditioned Accelerated Gradient (SPAG) method [1] has complexity bounds superior to other such algorithms but requires an exact solution for computationally intensive auxiliary optimization problems at every iteration. In this paper, we propose an Inexact SPAG (InSPAG) and explicitly characterize the accuracy by which the corresponding auxiliary subproblem needs to be solved to guarantee the same convergence rate as the exact method. We build our results by first developing an inexact adaptive accelerated Bregman proximal gradient method for general optimization problems under relative smoothness and strong convexity assumptions, which may be of independent interest. Moreover, we explore the properties of the auxiliary problem in the InSPAG algorithm assuming Lipschitz third-order derivatives and strong convexity. For such problem class, we develop a linearly convergent Hyperfast second-order method and estimate the total complexity of the InSPAG method with hyperfast auxiliary problem solver. Finally, we illustrate the proposed method's practical efficiency by performing large-scale numerical experiments on logistic regression models. To the best of our knowledge, these are the first empirical results on implementing high-order methods on large-scale problems, as we work with data where the dimension is of the order of 3 million, and the number of samples is 700 million.
•Inexact Statistically Preconditioned Accelerated Gradient Method for large-scale distributed convex empirical risk minimization problems.•Hyperfast second-order algorithm for minimizing strongly convex functions with Lipschitz third-order derivatives.•Inexact adaptive accelerated Bregman proximal gradient method for minimization under relative smoothness and strong convexity assumptions.•Empirical evidence for the efficiency of tensor optimization methods for large-scale ERM problems. Statistical preconditioning enables fast methods for distributed large-scale empirical risk minimization problems. In this approach, multiple worker nodes compute gradients in parallel, which are then used by the central node to update the parameter by solving an auxiliary (preconditioned) smaller-scale optimization problem. The recently proposed Statistically Preconditioned Accelerated Gradient (SPAG) method [1] has complexity bounds superior to other such algorithms but requires an exact solution for computationally intensive auxiliary optimization problems at every iteration. In this paper, we propose an Inexact SPAG (InSPAG) and explicitly characterize the accuracy by which the corresponding auxiliary subproblem needs to be solved to guarantee the same convergence rate as the exact method. We build our results by first developing an inexact adaptive accelerated Bregman proximal gradient method for general optimization problems under relative smoothness and strong convexity assumptions, which may be of independent interest. Moreover, we explore the properties of the auxiliary problem in the InSPAG algorithm assuming Lipschitz third-order derivatives and strong convexity. For such problem class, we develop a linearly convergent Hyperfast second-order method and estimate the total complexity of the InSPAG method with hyperfast auxiliary problem solver. Finally, we illustrate the proposed method's practical efficiency by performing large-scale numerical experiments on logistic regression models. To the best of our knowledge, these are the first empirical results on implementing high-order methods on large-scale problems, as we work with data where the dimension is of the order of 3 million, and the number of samples is 700 million. |
| ArticleNumber | 100045 |
| Author | Dvurechensky, Pavel Lukashevich, Aleksandr Lee, Soomin Ordentlich, Erik Uribe, César A. Kamzolov, Dmitry Gasnikov, Alexander |
| Author_xml | – sequence: 1 givenname: Pavel orcidid: 0000-0003-1201-2343 surname: Dvurechensky fullname: Dvurechensky, Pavel email: pavel.dvurechensky@wias-berlin.de organization: Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany – sequence: 2 givenname: Dmitry orcidid: 0000-0001-8488-9692 surname: Kamzolov fullname: Kamzolov, Dmitry email: kamzolov.dmitry@phystech.edu organization: Moscow Institute of Physics and Technology, Dolgoprudny, Russia – sequence: 3 givenname: Aleksandr orcidid: 0000-0002-4986-9941 surname: Lukashevich fullname: Lukashevich, Aleksandr email: aleksandr.lukashevich@skoltech.ru organization: Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow, Russia – sequence: 4 givenname: Soomin surname: Lee fullname: Lee, Soomin email: soominl@yahooinc.com organization: Yahoo! Research, Sunnyvale, CA, United States of America – sequence: 5 givenname: Erik surname: Ordentlich fullname: Ordentlich, Erik email: eord@yahooinc.com organization: Yahoo! Research, Sunnyvale, CA, United States of America – sequence: 6 givenname: César A. orcidid: 0000-0002-7080-9724 surname: Uribe fullname: Uribe, César A. email: cauribe@rice.edu organization: Rice University, Houston, TX, United States of America – sequence: 7 givenname: Alexander surname: Gasnikov fullname: Gasnikov, Alexander email: gasnikov.av@mipt.ru organization: Moscow Institute of Physics and Technology, Dolgoprudny, Russia |
| BookMark | eNp9kEtLAzEUhbOoYK39A67mD0zNszMDbqT4KBTc6DrkcaMZpk1JYqH-ejOtbly4Sjj3nMu53xWa7MIOELoheEEwWd72C-hNWFBMaREw5mKCppR0tOYcLy_RPKW-yETgBjMxRR_Pxz1Ep1KuEpiws3WIFmI1BKOGKoXhADFVLsQKnPPGw64Ys8o-ZV8cw7Hax1POZ1-a2MqWSfT6M5d_2Ge_9V9qHF2jC6eGBPOfd4beHh9eV8_15uVpvbrf1IYTnGvmWKsZgHGd7YRreMtJx6nlQnVcM9wyYolYUsCtbpwhwIqREwtaaCGgYzO0Pu-1QfVyH_1WxaMMysuTEOK7VLF0H0A63dqGcN60nHMBoJkRTcsUNVxTW5rMUHveZWJIKYKTxufTNTkqP0iC5Qhd9nKELkfo8gy9ROmf6G-Vf0N35xAUQAcPUaaRuAHrC-RcLvD_xb8BnXSh0Q |
| CitedBy_id | crossref_primary_10_1080_10556788_2025_2456118 crossref_primary_10_1109_TSP_2022_3185885 crossref_primary_10_1007_s11590_021_01834_w crossref_primary_10_1016_j_ejco_2024_100098 |
| Cites_doi | 10.1007/s10957-016-0999-6 10.1007/s10107-016-1065-8 10.1007/s10107-013-0677-5 10.1137/20M134842X 10.1137/110833786 10.1145/1327452.1327492 10.1134/S0965542518010050 10.1137/20M134705X 10.1007/s10957-021-01930-y 10.1137/16M1099546 10.1137/19M130769X 10.1287/moor.2016.0817 10.1007/s10107-021-01618-1 10.1137/19M1259973 10.1007/s10107-012-0629-5 10.1007/s10589-021-00273-8 10.1007/s10107-019-01406-y 10.1007/s10107-004-0552-5 10.1016/j.ejco.2021.100015 10.1137/080716542 10.1080/10556788.2021.1924714 10.1137/16M1106316 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.ejco.2022.100045 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | oai_doaj_org_article_fb8d7144784445eeb3c5783a2c4b2d3f 10_1016_j_ejco_2022_100045 S2192440622000211 |
| GroupedDBID | -EM 0R~ 0SF 0VY 203 30V 3V. 4.4 408 409 6I. 7WY 8FE 8FG 8FL 96X AAEDW AAFTH AAIAL AAJKR AALRI AARHV AARTL AATVU AAWCG AAXUO AAYIU AAYQN AAYTO AAZMS ABBXA ABDZT ABFTV ABJNI ABJOX ABKCH ABQBU ABTEG ABTMW ABUWG ABXPI ACGFS ACIPQ ACKNC ACMLO ACOKC ADHHG ADHIR ADINQ ADKPE ADRFC ADURQ ADVLN ADYFF ADZKW AEBTG AEGNC AEJHL AEJRE AEOHA AEPYU AETCA AEXQZ AEXYK AFBBN AFKRA AFLOW AFWTZ AFZKB AGAYW AGDGC AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AILAN AITGF AITUG AJBLW AJRNO AJZVZ AKLTO AKRWK ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMRAJ AMYQR ANMIH ARAPS ASPBG AUKKA AVWKF AVXWI AXJJW AXYYD AYQZM AZFZN AZQEC BAPOH BENPR BEZIV BGLVJ BGNMA BPHCQ CCPQU CSCUP DWQXO EBS EIOEI EJD ESBYG FDB FEDTE FERAY FINBP FNLPD FRNLG FRRFC FSGXE FYJPI GGRSB GJIRD GNUQQ GROUPED_DOAJ HCIFZ HF~ HMJXF HQYDN HRMNR HVGLF HZ~ I0C IXD J-C JBSCW JCJTX K60 K6V K6~ K7- KOV M0C M0N M4Y NB0 NQJWS NU0 O9- O93 O9G O9J OK1 P62 PQBIZ PQBZA PQQKQ PROAC RLLFE ROL RSV SHX SISQX SNX SOJ SPISZ STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYWO AAYXX ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFFHD AFHIU AFPUW AHWEU AIGII AIXLP AKBMS AKYEP APXCP CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c410t-3f38b3eecf9d95f74841942d45a94b30831d1562e08b7fc1e3f9d41deb5b55e93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000876421600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2192-4406 |
| IngestDate | Fri Oct 03 12:50:51 EDT 2025 Wed Nov 05 20:49:21 EST 2025 Tue Nov 18 21:24:14 EST 2025 Mon Sep 30 11:37:07 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Empirical risk minimization Distributed optimization Tensor optimization methods Statistical preconditioning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-3f38b3eecf9d95f74841942d45a94b30831d1562e08b7fc1e3f9d41deb5b55e93 |
| ORCID | 0000-0002-7080-9724 0000-0001-8488-9692 0000-0002-4986-9941 0000-0003-1201-2343 |
| OpenAccessLink | https://doaj.org/article/fb8d7144784445eeb3c5783a2c4b2d3f |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fb8d7144784445eeb3c5783a2c4b2d3f crossref_citationtrail_10_1016_j_ejco_2022_100045 crossref_primary_10_1016_j_ejco_2022_100045 elsevier_sciencedirect_doi_10_1016_j_ejco_2022_100045 |
| PublicationCentury | 2000 |
| PublicationDate | 2022 2022-00-00 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | EURO journal on computational optimization |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Yang (br0060) 2013 Stonyakin, Tyurin, Gasnikov, Dvurechensky, Agafonov, Dvinskikh, Alkousa, Pasechnyuk, Artamonov, Piskunova (br0310) 2021; 36 Birgin, Gardenghi, Martínez, Santos, Toint (br0180) 2017; 163 Lu, Freund, Nesterov (br0300) 2018; 28 Kamzolov (br0590) 2020 Nesterov (br0420) 2018; vol. 137 Dean, Ghemawat (br0080) 2008; 51 Gasnikov, Dvurechensky, Gorbunov, Vorontsova, Selikhanovych, Uribe, Jiang, Wang, Zhang, Bubeck, Jiang, Lee, Li, Sidford (br0230) 2019; vol. 99 Nesterov (br0100) 2018 Monteiro, Svaiter (br0470) 2013; 23 Cormen, Leiserson, Rivest, Stein (br0270) 2009 Yuan, Li (br0030) 2020; 21 Shalev-Shwartz (br0610) 2016; vol. 48 Florea (br0380) 2022 Cartis, Gould, Toint (br0200) 2019; 29 Li, Andersen, Park, Smola, Ahmed, Josifovski, Long, Shekita, Su (br0070) 2014 Lan (br0490) 2020 Kamzolov, Gasnikov, Dvurechensky (br0550) 2020 Doikov, Nesterov (br0530) 2020; vol. 119 Pytorch (br0580) 2020 Reddi, Konečnỳ, Richtárik, Póczós, Smola (br0110) Apache (br0570) 2020 Nesterov (br0360) 2013; 140 Hendrikx, Bach, Massoulié (br0050) 2021; 31 Dragomir, Taylor, d'Aspremont, Bolte (br0140) 2022; 194 Nesterov (br0480) 2005; 103 Arjevani, Shamir (br0150) 2015 Scaman, Bach, Bubeck, Lee, Massoulié (br0400) 2017; vol. 70 Nesterov (br0510) 2020 Nesterov (br0250) 2021; 31 Zhang, Lin (br0120) 2015; vol. 37 Nesterov (br0240) 2021; 1 Bauschke, Bolte, Teboulle (br0390) 2017; 42 Shamir, Srebro, Zhang (br0620) 2014 Beck, Teboulle (br0350) 2009; 2 Hanzely, Richtárik, Xiao (br0370) 2021; 79 Carmon, Duchi, Hinder, Sidford (br0190) 2020; 184 Dvurechensky, Gasnikov, Kroshnin (br0430) 2018; vol. 80 Lin, Xiao (br0460) 2014; vol. 32 Lin, Mairal, Harchaoui (br0130) 2015 Huang, Smith, Henry, van de Geijn (br0280) 2016 Gasnikov, Nesterov (br0410) 2018; 58 Bauschke, Bolte, Teboulle (br0290) 2016; 42 Dvurechensky, Shtern, Staudigl (br0450) 2021; 9 Kamzolov, Gasnikov (br0260) Nesterov (br0220) 2019 Lan, Lee, Zhou (br0090) 2018 Doikov, Nesterov (br0500) 2020; 30 Kingma, Ba (br0600) Lewis, Yang, Rose, Li (br0560) Apr 2004; 5 Ben-Tal, Nemirovski (br0320) 2020 Dvurechensky, Gasnikov (br0340) 2016; 171 Wang, Roosta, Xu, Mahoney (br0040) 2018 Sun, Scutari, Daneshmand (br0160) 2022; 32 Devolder, Glineur, Nesterov (br0330) 2014; 146 Shamir, Srebro, Zhang (br0020) 2014; vol. 32 Dvurechensky, Dvinskikh, Gasnikov, Uribe, Nedić (br0440) 2018 Gasnikov (br0520) Hendrikx, Xiao, Bubeck, Bach, Massoulie (br0010) 2020; vol. 119 Agafonov, Kamzolov, Dvurechensky, Gasnikov (br0540) Bullins (br0170) 2020; vol. 125 Baes (br0210) 2009 Kamzolov (10.1016/j.ejco.2022.100045_br0260) Dean (10.1016/j.ejco.2022.100045_br0080) 2008; 51 Bauschke (10.1016/j.ejco.2022.100045_br0290) 2016; 42 Wang (10.1016/j.ejco.2022.100045_br0040) 2018 Bullins (10.1016/j.ejco.2022.100045_br0170) 2020; vol. 125 Bauschke (10.1016/j.ejco.2022.100045_br0390) 2017; 42 Nesterov (10.1016/j.ejco.2022.100045_br0420) 2018; vol. 137 Yuan (10.1016/j.ejco.2022.100045_br0030) 2020; 21 Lan (10.1016/j.ejco.2022.100045_br0490) 2020 Kingma (10.1016/j.ejco.2022.100045_br0600) Doikov (10.1016/j.ejco.2022.100045_br0530) 2020; vol. 119 Gasnikov (10.1016/j.ejco.2022.100045_br0410) 2018; 58 Doikov (10.1016/j.ejco.2022.100045_br0500) 2020; 30 Ben-Tal (10.1016/j.ejco.2022.100045_br0320) Dvurechensky (10.1016/j.ejco.2022.100045_br0450) 2021; 9 Carmon (10.1016/j.ejco.2022.100045_br0190) 2020; 184 Nesterov (10.1016/j.ejco.2022.100045_br0220) 2019 Lin (10.1016/j.ejco.2022.100045_br0460) 2014; vol. 32 Lan (10.1016/j.ejco.2022.100045_br0090) 2018 Beck (10.1016/j.ejco.2022.100045_br0350) 2009; 2 Florea (10.1016/j.ejco.2022.100045_br0380) 2022 Monteiro (10.1016/j.ejco.2022.100045_br0470) 2013; 23 Lewis (10.1016/j.ejco.2022.100045_br0560) 2004; 5 Apache (10.1016/j.ejco.2022.100045_br0570) Li (10.1016/j.ejco.2022.100045_br0070) 2014 Cormen (10.1016/j.ejco.2022.100045_br0270) 2009 Reddi (10.1016/j.ejco.2022.100045_br0110) Lu (10.1016/j.ejco.2022.100045_br0300) 2018; 28 Shamir (10.1016/j.ejco.2022.100045_br0020) 2014; vol. 32 Birgin (10.1016/j.ejco.2022.100045_br0180) 2017; 163 Agafonov (10.1016/j.ejco.2022.100045_br0540) Dvurechensky (10.1016/j.ejco.2022.100045_br0440) 2018 Shalev-Shwartz (10.1016/j.ejco.2022.100045_br0610) 2016; vol. 48 Shamir (10.1016/j.ejco.2022.100045_br0620) 2014 Nesterov (10.1016/j.ejco.2022.100045_br0240) 2021; 1 Nesterov (10.1016/j.ejco.2022.100045_br0250) 2021; 31 Yang (10.1016/j.ejco.2022.100045_br0060) 2013 Lin (10.1016/j.ejco.2022.100045_br0130) 2015 Scaman (10.1016/j.ejco.2022.100045_br0400) 2017; vol. 70 Hendrikx (10.1016/j.ejco.2022.100045_br0050) 2021; 31 Kamzolov (10.1016/j.ejco.2022.100045_br0590) 2020 Baes (10.1016/j.ejco.2022.100045_br0210) 2009 Hanzely (10.1016/j.ejco.2022.100045_br0370) 2021; 79 Dvurechensky (10.1016/j.ejco.2022.100045_br0430) 2018; vol. 80 Nesterov (10.1016/j.ejco.2022.100045_br0100) 2018 Cartis (10.1016/j.ejco.2022.100045_br0200) 2019; 29 Huang (10.1016/j.ejco.2022.100045_br0280) 2016 Arjevani (10.1016/j.ejco.2022.100045_br0150) 2015 Hendrikx (10.1016/j.ejco.2022.100045_br0010) 2020; vol. 119 Dragomir (10.1016/j.ejco.2022.100045_br0140) 2022; 194 Gasnikov (10.1016/j.ejco.2022.100045_br0520) Nesterov (10.1016/j.ejco.2022.100045_br0360) 2013; 140 Sun (10.1016/j.ejco.2022.100045_br0160) 2022; 32 Stonyakin (10.1016/j.ejco.2022.100045_br0310) 2021; 36 Devolder (10.1016/j.ejco.2022.100045_br0330) 2014; 146 Dvurechensky (10.1016/j.ejco.2022.100045_br0340) 2016; 171 Nesterov (10.1016/j.ejco.2022.100045_br0510) 2020 Nesterov (10.1016/j.ejco.2022.100045_br0480) 2005; 103 Kamzolov (10.1016/j.ejco.2022.100045_br0550) 2020 Pytorch (10.1016/j.ejco.2022.100045_br0580) Gasnikov (10.1016/j.ejco.2022.100045_br0230) 2019; vol. 99 Zhang (10.1016/j.ejco.2022.100045_br0120) 2015; vol. 37 |
| References_xml | – volume: 28 start-page: 333 year: 2018 end-page: 354 ident: br0300 article-title: Relatively smooth convex optimization by first-order methods, and applications publication-title: SIAM J. Control Optim. – volume: vol. 32 start-page: 73 year: 2014 end-page: 81 ident: br0460 article-title: An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization publication-title: Proceedings of the 31st International Conference on Machine Learning – start-page: 1 year: 2020 end-page: 29 ident: br0510 article-title: Inexact basic tensor methods for some classes of convex optimization problems publication-title: Optim. Methods Softw. – ident: br0540 article-title: Inexact tensor methods and their application to stochastic convex optimization – year: 2009 ident: br0210 article-title: Estimate Sequence Methods: Extensions and Approximations – volume: vol. 32 start-page: 1000 year: 2014 end-page: 1008 ident: br0020 article-title: Communication-efficient distributed optimization using an approximate Newton-type method publication-title: Proceedings of the 31st International Conference on Machine Learning – volume: 184 start-page: 71 year: 2020 end-page: 120 ident: br0190 article-title: Lower bounds for finding stationary points I publication-title: Math. Program. – volume: vol. 125 start-page: 988 year: 2020 end-page: 1030 ident: br0170 article-title: Highly smooth minimization of non-smooth problems publication-title: Proceedings of Thirty Third Conference on Learning Theory – volume: 36 start-page: 1155 year: 2021 end-page: 1201 ident: br0310 article-title: Inexact model: a framework for optimization and variational inequalities publication-title: Optim. Methods Softw. – volume: 51 start-page: 107 year: 2008 end-page: 113 ident: br0080 article-title: Mapreduce: simplified data processing on large clusters publication-title: Commun. ACM – volume: 171 start-page: 121 year: 2016 end-page: 145 ident: br0340 article-title: Stochastic intermediate gradient method for convex problems with stochastic inexact oracle publication-title: J. Optim. Theory Appl. – volume: 140 start-page: 125 year: 2013 end-page: 161 ident: br0360 article-title: Gradient methods for minimizing composite functions publication-title: Math. Program. – start-page: 583 year: 2014 end-page: 598 ident: br0070 article-title: Scaling distributed machine learning with the parameter server publication-title: 11th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14) – volume: vol. 119 start-page: 4203 year: 2020 end-page: 4227 ident: br0010 article-title: Statistically preconditioned accelerated gradient method for distributed optimization publication-title: Proceedings of the 37th International Conference on Machine Learning – volume: 23 start-page: 1092 year: 2013 end-page: 1125 ident: br0470 article-title: An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods publication-title: SIAM J. Control Optim. – volume: 103 start-page: 127 year: 2005 end-page: 152 ident: br0480 article-title: Smooth minimization of non-smooth functions publication-title: Math. Program. – year: 2018 ident: br0100 article-title: Lectures on Convex Optimization, vol. 137 – volume: 146 start-page: 37 year: 2014 end-page: 75 ident: br0330 article-title: First-order methods of smooth convex optimization with inexact oracle publication-title: Math. Program. – ident: br0110 article-title: Aide: fast and communication efficient distributed optimization – volume: vol. 37 start-page: 362 year: 2015 end-page: 370 ident: br0120 article-title: Disco: distributed optimization for self-concordant empirical loss publication-title: Proceedings of the 32nd International Conference on Machine Learning – volume: 29 start-page: 595 year: 2019 end-page: 615 ident: br0200 article-title: Universal regularization methods: varying the power, the smoothness and the accuracy publication-title: SIAM J. Control Optim. – start-page: 1 year: 2018 end-page: 48 ident: br0090 article-title: Communication-efficient algorithms for decentralized and stochastic optimization publication-title: Math. Program. – start-page: 1756 year: 2015 end-page: 1764 ident: br0150 article-title: Communication complexity of distributed convex learning and optimization publication-title: Advances in Neural Information Processing Systems, vol. 28 – year: 2020 ident: br0490 article-title: First-Order and Stochastic Optimization Methods for Machine Learning – volume: 9 year: 2021 ident: br0450 article-title: First-order methods for convex optimization publication-title: EURO J. Comput. Optim. – volume: 31 start-page: 2807 year: 2021 end-page: 2828 ident: br0250 article-title: Inexact high-order proximal-point methods with auxiliary search procedure publication-title: SIAM J. Control Optim. – start-page: 1 year: 2022 end-page: 28 ident: br0380 article-title: Exact gradient methods with memory publication-title: Optim. Methods Softw. – volume: 2 start-page: 183 year: 2009 end-page: 202 ident: br0350 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. – volume: 163 start-page: 359 year: 2017 end-page: 368 ident: br0180 article-title: Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models publication-title: Math. Program. – year: 2020 ident: br0580 – volume: vol. 99 start-page: 1392 year: 2019 end-page: 1393 ident: br0230 article-title: Near optimal methods for minimizing convex functions with Lipschitz publication-title: Proceedings of the Thirty-Second Conference on Learning Theory – volume: vol. 48 start-page: 747 year: 2016 end-page: 754 ident: br0610 article-title: Sdca without duality, regularization, and individual convexity publication-title: Proceedings of the 33rd International Conference on Machine Learning – start-page: 1 year: 2019 end-page: 27 ident: br0220 article-title: Implementable tensor methods in unconstrained convex optimization publication-title: Math. Program. – volume: 30 start-page: 3146 year: 2020 end-page: 3169 ident: br0500 article-title: Contracting proximal methods for smooth convex optimization publication-title: SIAM J. Control Optim. – start-page: 2332 year: 2018 end-page: 2342 ident: br0040 article-title: Giant: globally improved approximate Newton method for distributed optimization publication-title: Advances in Neural Information Processing Systems – volume: 1 start-page: 1 year: 2021 end-page: 30 ident: br0240 article-title: Superfast second-order methods for unconstrained convex optimization publication-title: J. Optim. Theory Appl. – start-page: 690 year: 2016 end-page: 701 ident: br0280 article-title: Strassen's algorithm reloaded publication-title: SC'16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis – volume: 21 start-page: 1 year: 2020 end-page: 51 ident: br0030 article-title: On convergence of distributed approximate Newton methods: globalization, sharper bounds and beyond publication-title: J. Mach. Learn. Res. – volume: 58 start-page: 48 year: 2018 end-page: 64 ident: br0410 article-title: Universal method for stochastic composite optimization problems publication-title: Comput. Math. Math. Phys. – start-page: 10783 year: 2018 end-page: 10793 ident: br0440 article-title: Decentralize and randomize: faster algorithm for Wasserstein barycenters publication-title: Advances in Neural Information Processing Systems, vol. 31 – volume: vol. 70 start-page: 3027 year: 2017 end-page: 3036 ident: br0400 article-title: Optimal algorithms for smooth and strongly convex distributed optimization in networks publication-title: Proceedings of the 34th International Conference on Machine Learning – year: 2020 ident: br0320 article-title: Lectures on Modern Convex Optimization (Lecture Notes), Personal web-page of A. Nemirovski – volume: 42 start-page: 330 year: 2017 end-page: 348 ident: br0390 article-title: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications publication-title: Math. Oper. Res. – volume: 194 start-page: 41 year: 2022 end-page: 83 ident: br0140 article-title: Optimal complexity and certification of Bregman first-order methods publication-title: Math. Program. – ident: br0520 article-title: Universal gradient descent – volume: 5 start-page: 361 year: Apr 2004 end-page: 397 ident: br0560 article-title: Rcv1: a new benchmark collection for text categorization research publication-title: J. Mach. Learn. Res. – year: 2009 ident: br0270 article-title: Introduction to Algorithms – start-page: 1000 year: 2014 end-page: 1008 ident: br0620 article-title: Communication-efficient distributed optimization using an approximate Newton-type method publication-title: International Conference on Machine Learning – start-page: 166 year: 2020 end-page: 183 ident: br0550 article-title: Optimal combination of tensor optimization methods publication-title: Optimization and Applications – ident: br0600 article-title: Adam: a method for stochastic optimization – volume: vol. 80 start-page: 1367 year: 2018 end-page: 1376 ident: br0430 article-title: Computational optimal transport: complexity by accelerated gradient descent is better than by Sinkhorn's algorithm publication-title: Proceedings of the 35th International Conference on Machine Learning – start-page: 167 year: 2020 end-page: 178 ident: br0590 article-title: Near-optimal hyperfast second-order method for convex optimization publication-title: Mathematical Optimization Theory and Operations Research – volume: 79 start-page: 405 year: 2021 end-page: 440 ident: br0370 article-title: Accelerated Bregman proximal gradient methods for relatively smooth convex optimization publication-title: Comput. Optim. Appl. – volume: vol. 137 year: 2018 ident: br0420 article-title: Lectures on Convex Optimization publication-title: Springer Optimization and Its Applications – start-page: 3384 year: 2015 end-page: 3392 ident: br0130 article-title: A universal catalyst for first-order optimization publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems, vol. 2 – volume: 32 start-page: 354 year: 2022 end-page: 385 ident: br0160 article-title: Distributed optimization based on gradient tracking revisited: enhancing convergence rate via surrogation publication-title: SIAM J. Control Optim. – volume: vol. 119 start-page: 2577 year: 2020 end-page: 2586 ident: br0530 article-title: Inexact tensor methods with dynamic accuracies publication-title: Proceedings of the 37th International Conference on Machine Learning – start-page: 629 year: 2013 end-page: 637 ident: br0060 article-title: Trading computation for communication: distributed stochastic dual coordinate ascent publication-title: Advances in Neural Information Processing Systems – year: 2020 ident: br0570 article-title: Spark 2.4.5 – volume: 31 start-page: 2753 year: 2021 end-page: 2783 ident: br0050 article-title: An optimal algorithm for decentralized finite-sum optimization publication-title: SIAM J. Control Optim. – ident: br0260 article-title: Near-optimal hyperfast second-order method for convex optimization and its sliding – volume: 42 start-page: 330 year: 2016 end-page: 348 ident: br0290 article-title: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications publication-title: Math. Oper. Res. – volume: vol. 119 start-page: 4203 year: 2020 ident: 10.1016/j.ejco.2022.100045_br0010 article-title: Statistically preconditioned accelerated gradient method for distributed optimization – volume: 171 start-page: 121 issue: 1 year: 2016 ident: 10.1016/j.ejco.2022.100045_br0340 article-title: Stochastic intermediate gradient method for convex problems with stochastic inexact oracle publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-0999-6 – volume: 5 start-page: 361 year: 2004 ident: 10.1016/j.ejco.2022.100045_br0560 article-title: Rcv1: a new benchmark collection for text categorization research publication-title: J. Mach. Learn. Res. – volume: vol. 119 start-page: 2577 year: 2020 ident: 10.1016/j.ejco.2022.100045_br0530 article-title: Inexact tensor methods with dynamic accuracies – volume: vol. 32 start-page: 73 year: 2014 ident: 10.1016/j.ejco.2022.100045_br0460 article-title: An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization – volume: vol. 48 start-page: 747 year: 2016 ident: 10.1016/j.ejco.2022.100045_br0610 article-title: Sdca without duality, regularization, and individual convexity – start-page: 1000 year: 2014 ident: 10.1016/j.ejco.2022.100045_br0620 article-title: Communication-efficient distributed optimization using an approximate Newton-type method – volume: 163 start-page: 359 issue: 1 year: 2017 ident: 10.1016/j.ejco.2022.100045_br0180 article-title: Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models publication-title: Math. Program. doi: 10.1007/s10107-016-1065-8 – volume: 146 start-page: 37 issue: 1 year: 2014 ident: 10.1016/j.ejco.2022.100045_br0330 article-title: First-order methods of smooth convex optimization with inexact oracle publication-title: Math. Program. doi: 10.1007/s10107-013-0677-5 – ident: 10.1016/j.ejco.2022.100045_br0320 – start-page: 3384 year: 2015 ident: 10.1016/j.ejco.2022.100045_br0130 article-title: A universal catalyst for first-order optimization – ident: 10.1016/j.ejco.2022.100045_br0260 – start-page: 167 year: 2020 ident: 10.1016/j.ejco.2022.100045_br0590 article-title: Near-optimal hyperfast second-order method for convex optimization – volume: 31 start-page: 2753 issue: 4 year: 2021 ident: 10.1016/j.ejco.2022.100045_br0050 article-title: An optimal algorithm for decentralized finite-sum optimization publication-title: SIAM J. Control Optim. doi: 10.1137/20M134842X – volume: 23 start-page: 1092 issue: 2 year: 2013 ident: 10.1016/j.ejco.2022.100045_br0470 article-title: An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods publication-title: SIAM J. Control Optim. doi: 10.1137/110833786 – start-page: 1 year: 2022 ident: 10.1016/j.ejco.2022.100045_br0380 article-title: Exact gradient methods with memory publication-title: Optim. Methods Softw. – ident: 10.1016/j.ejco.2022.100045_br0540 – volume: 51 start-page: 107 issue: 1 year: 2008 ident: 10.1016/j.ejco.2022.100045_br0080 article-title: Mapreduce: simplified data processing on large clusters publication-title: Commun. ACM doi: 10.1145/1327452.1327492 – volume: 58 start-page: 48 issue: 1 year: 2018 ident: 10.1016/j.ejco.2022.100045_br0410 article-title: Universal method for stochastic composite optimization problems publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542518010050 – volume: 31 start-page: 2807 issue: 4 year: 2021 ident: 10.1016/j.ejco.2022.100045_br0250 article-title: Inexact high-order proximal-point methods with auxiliary search procedure publication-title: SIAM J. Control Optim. doi: 10.1137/20M134705X – start-page: 1 year: 2018 ident: 10.1016/j.ejco.2022.100045_br0090 article-title: Communication-efficient algorithms for decentralized and stochastic optimization publication-title: Math. Program. – ident: 10.1016/j.ejco.2022.100045_br0520 – volume: vol. 125 start-page: 988 year: 2020 ident: 10.1016/j.ejco.2022.100045_br0170 article-title: Highly smooth minimization of non-smooth problems – volume: vol. 80 start-page: 1367 year: 2018 ident: 10.1016/j.ejco.2022.100045_br0430 article-title: Computational optimal transport: complexity by accelerated gradient descent is better than by Sinkhorn's algorithm – volume: 21 start-page: 1 issue: 206 year: 2020 ident: 10.1016/j.ejco.2022.100045_br0030 article-title: On convergence of distributed approximate Newton methods: globalization, sharper bounds and beyond publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 1 year: 2021 ident: 10.1016/j.ejco.2022.100045_br0240 article-title: Superfast second-order methods for unconstrained convex optimization publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-021-01930-y – volume: 28 start-page: 333 issue: 1 year: 2018 ident: 10.1016/j.ejco.2022.100045_br0300 article-title: Relatively smooth convex optimization by first-order methods, and applications publication-title: SIAM J. Control Optim. doi: 10.1137/16M1099546 – volume: 30 start-page: 3146 issue: 4 year: 2020 ident: 10.1016/j.ejco.2022.100045_br0500 article-title: Contracting proximal methods for smooth convex optimization publication-title: SIAM J. Control Optim. doi: 10.1137/19M130769X – volume: 42 start-page: 330 issue: 2 year: 2017 ident: 10.1016/j.ejco.2022.100045_br0390 article-title: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications publication-title: Math. Oper. Res. doi: 10.1287/moor.2016.0817 – volume: 194 start-page: 41 issue: 1 year: 2022 ident: 10.1016/j.ejco.2022.100045_br0140 article-title: Optimal complexity and certification of Bregman first-order methods publication-title: Math. Program. doi: 10.1007/s10107-021-01618-1 – start-page: 10783 year: 2018 ident: 10.1016/j.ejco.2022.100045_br0440 article-title: Decentralize and randomize: faster algorithm for Wasserstein barycenters – start-page: 1 year: 2019 ident: 10.1016/j.ejco.2022.100045_br0220 article-title: Implementable tensor methods in unconstrained convex optimization publication-title: Math. Program. – volume: vol. 137 year: 2018 ident: 10.1016/j.ejco.2022.100045_br0420 article-title: Lectures on Convex Optimization – volume: 32 start-page: 354 issue: 2 year: 2022 ident: 10.1016/j.ejco.2022.100045_br0160 article-title: Distributed optimization based on gradient tracking revisited: enhancing convergence rate via surrogation publication-title: SIAM J. Control Optim. doi: 10.1137/19M1259973 – start-page: 166 year: 2020 ident: 10.1016/j.ejco.2022.100045_br0550 article-title: Optimal combination of tensor optimization methods – volume: 140 start-page: 125 issue: 1 year: 2013 ident: 10.1016/j.ejco.2022.100045_br0360 article-title: Gradient methods for minimizing composite functions publication-title: Math. Program. doi: 10.1007/s10107-012-0629-5 – volume: vol. 70 start-page: 3027 year: 2017 ident: 10.1016/j.ejco.2022.100045_br0400 article-title: Optimal algorithms for smooth and strongly convex distributed optimization in networks – ident: 10.1016/j.ejco.2022.100045_br0600 – year: 2020 ident: 10.1016/j.ejco.2022.100045_br0490 – ident: 10.1016/j.ejco.2022.100045_br0570 – start-page: 2332 year: 2018 ident: 10.1016/j.ejco.2022.100045_br0040 article-title: Giant: globally improved approximate Newton method for distributed optimization – volume: 79 start-page: 405 issue: 2 year: 2021 ident: 10.1016/j.ejco.2022.100045_br0370 article-title: Accelerated Bregman proximal gradient methods for relatively smooth convex optimization publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-021-00273-8 – year: 2009 ident: 10.1016/j.ejco.2022.100045_br0210 – ident: 10.1016/j.ejco.2022.100045_br0580 – volume: 184 start-page: 71 issue: 1 year: 2020 ident: 10.1016/j.ejco.2022.100045_br0190 article-title: Lower bounds for finding stationary points I publication-title: Math. Program. doi: 10.1007/s10107-019-01406-y – start-page: 629 year: 2013 ident: 10.1016/j.ejco.2022.100045_br0060 article-title: Trading computation for communication: distributed stochastic dual coordinate ascent – volume: 103 start-page: 127 issue: 1 year: 2005 ident: 10.1016/j.ejco.2022.100045_br0480 article-title: Smooth minimization of non-smooth functions publication-title: Math. Program. doi: 10.1007/s10107-004-0552-5 – volume: 9 year: 2021 ident: 10.1016/j.ejco.2022.100045_br0450 article-title: First-order methods for convex optimization publication-title: EURO J. Comput. Optim. doi: 10.1016/j.ejco.2021.100015 – year: 2009 ident: 10.1016/j.ejco.2022.100045_br0270 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 10.1016/j.ejco.2022.100045_br0350 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: vol. 37 start-page: 362 year: 2015 ident: 10.1016/j.ejco.2022.100045_br0120 article-title: Disco: distributed optimization for self-concordant empirical loss – start-page: 690 year: 2016 ident: 10.1016/j.ejco.2022.100045_br0280 article-title: Strassen's algorithm reloaded – volume: vol. 99 start-page: 1392 year: 2019 ident: 10.1016/j.ejco.2022.100045_br0230 article-title: Near optimal methods for minimizing convex functions with Lipschitz p-th derivatives – start-page: 1756 year: 2015 ident: 10.1016/j.ejco.2022.100045_br0150 article-title: Communication complexity of distributed convex learning and optimization – start-page: 583 year: 2014 ident: 10.1016/j.ejco.2022.100045_br0070 article-title: Scaling distributed machine learning with the parameter server – year: 2018 ident: 10.1016/j.ejco.2022.100045_br0100 – volume: 36 start-page: 1155 issue: 6 year: 2021 ident: 10.1016/j.ejco.2022.100045_br0310 article-title: Inexact model: a framework for optimization and variational inequalities publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2021.1924714 – start-page: 1 year: 2020 ident: 10.1016/j.ejco.2022.100045_br0510 article-title: Inexact basic tensor methods for some classes of convex optimization problems publication-title: Optim. Methods Softw. – ident: 10.1016/j.ejco.2022.100045_br0110 – volume: vol. 32 start-page: 1000 year: 2014 ident: 10.1016/j.ejco.2022.100045_br0020 article-title: Communication-efficient distributed optimization using an approximate Newton-type method – volume: 42 start-page: 330 issue: 2 year: 2016 ident: 10.1016/j.ejco.2022.100045_br0290 article-title: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications publication-title: Math. Oper. Res. doi: 10.1287/moor.2016.0817 – volume: 29 start-page: 595 issue: 1 year: 2019 ident: 10.1016/j.ejco.2022.100045_br0200 article-title: Universal regularization methods: varying the power, the smoothness and the accuracy publication-title: SIAM J. Control Optim. doi: 10.1137/16M1106316 |
| SSID | ssj0001507035 |
| Score | 2.247577 |
| Snippet | Statistical preconditioning enables fast methods for distributed large-scale empirical risk minimization problems. In this approach, multiple worker nodes... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 100045 |
| SubjectTerms | Distributed optimization Empirical risk minimization Statistical preconditioning Tensor optimization methods |
| Title | Hyperfast second-order local solvers for efficient statistically preconditioned distributed optimization |
| URI | https://dx.doi.org/10.1016/j.ejco.2022.100045 https://doaj.org/article/fb8d7144784445eeb3c5783a2c4b2d3f |
| Volume | 10 |
| WOSCitedRecordID | wos000876421600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 2192-4406 databaseCode: DOA dateStart: 20130101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0001507035 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqxKE9VEBbdfmSD9wqq0k8XttHQKA9IMQBKm6RP9WiLUW7CxL_nhk7i3KiF25R5NjR-MUzE715w9hRp73TSXsx9VYJcNkKCwqESa2XzkMMhZvz60JfXprbW3s1avVFnLAqD1wN9zN7EzVG_doAgEqY-wUEmXRdAN9Fmen0bbQdJVO1PpigTPxF_CI7Aei2hoqZSu5Kd4Eq_7qOWAIN1TKNvFIR7x85p5HDOd9in4dIkR_XN9xmH9L9Dvs00g_8wn7PMItcZLdc8SUltlEUJU1eHBRHVBHngmNYylNRikAHw6mCqIgzu_n8mT-UhDhWwaLII8noUgcsvP6Hh8nfoUrzK7s5P7s-nYmhdYII0DYrIbM0XqYUso1WZRIMbS10EZSz4CW1F4uYuXWpMV7n0CaJA6GNySuvVLLyG9u4x4W_M-6kdBjGTY1OLTgH3pisZJhipiPBZjdh7dp0fRh0xam9xbxfE8juejJ3T-buq7kn7MfrMw9VVePN0Se0I68jSRG73ECc9ANO-v_hZMLUej_7IbioQQNO9eeNxXffY_E99pGmrL9u9tnGavGYDthmeMINXxwW6L4Aq0zzUg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperfast+second-order+local+solvers+for+efficient+statistically+preconditioned+distributed+optimization&rft.jtitle=EURO+journal+on+computational+optimization&rft.au=Dvurechensky%2C+Pavel&rft.au=Kamzolov%2C+Dmitry&rft.au=Lukashevich%2C+Aleksandr&rft.au=Lee%2C+Soomin&rft.date=2022&rft.issn=2192-4406&rft.volume=10&rft.spage=100045&rft_id=info:doi/10.1016%2Fj.ejco.2022.100045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejco_2022_100045 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-4406&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-4406&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-4406&client=summon |