Approximate Distributed K-Means Clustering over a Peer-to-Peer Network

Data intensive peer-to-peer (P2P) networks are finding increasing number of applications. Data mining in such P2P environments is a natural extension. However, common monolithic data mining architectures do not fit well in such environments since they typically require centralizing the distributed d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on knowledge and data engineering Ročník 21; číslo 10; s. 1372 - 1388
Hlavní autoři: Datta, S., Giannella, C.R., Kargupta, H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.10.2009
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1041-4347, 1558-2191
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Data intensive peer-to-peer (P2P) networks are finding increasing number of applications. Data mining in such P2P environments is a natural extension. However, common monolithic data mining architectures do not fit well in such environments since they typically require centralizing the distributed data which is usually not practical in a large P2P network. Distributed data mining algorithms that avoid large-scale synchronization or data centralization offer an alternate choice. This paper considers the distributed K-means clustering problem where the data and computing resources are distributed over a large P2P network. It offers two algorithms which produce an approximation of the result produced by the standard centralized K-means clustering algorithm. The first is designed to operate in a dynamic P2P network that can produce clusterings by ldquolocalrdquo synchronization only. The second algorithm uses uniformly sampled peers and provides analytical guarantees regarding the accuracy of clustering on a P2P network. Empirical results show that both the algorithms demonstrate good performance compared to their centralized counterparts at the modest communication cost.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2008.222