Multi-Objective Gannet Optimization Algorithm for Dynamic Passenger Flow Allocation in Train Operation Plan Optimization
This paper proposes a multi-objective Gannet Optimization Algorithm (MOGOA) to address the issue of unbalanced train occupancy rates in railway train operation planning. MOGOA employs an adaptive multi-population co-evolutionary strategy to balance exploration and exploitation, utilizing a non-domin...
Uloženo v:
| Vydáno v: | IEEE access Ročník 11; s. 103693 - 103711 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes a multi-objective Gannet Optimization Algorithm (MOGOA) to address the issue of unbalanced train occupancy rates in railway train operation planning. MOGOA employs an adaptive multi-population co-evolutionary strategy to balance exploration and exploitation, utilizing a non-dominated sorting algorithm based on crowding distance to select parent and child samples. These samples serve as initial solutions for subsequent iterations. A novel maximin fitness function guides the iterative update of the global optimal position. MOGOA is applied to the train operation planning problem with dynamic passenger flow allocation feedback. It collaboratively optimizes the number of train operations, sections, and stops to reduce costs, balance occupancy rates, minimize travel time, and enhance travel satisfaction. The practical applicability of MOGOA in optimizing train operation plans based on dynamic passenger flow allocation is significant. |
|---|---|
| AbstractList | This paper proposes a multi-objective Gannet Optimization Algorithm (MOGOA) to address the issue of unbalanced train occupancy rates in railway train operation planning. MOGOA employs an adaptive multi-population co-evolutionary strategy to balance exploration and exploitation, utilizing a non-dominated sorting algorithm based on crowding distance to select parent and child samples. These samples serve as initial solutions for subsequent iterations. A novel maximin fitness function guides the iterative update of the global optimal position. MOGOA is applied to the train operation planning problem with dynamic passenger flow allocation feedback. It collaboratively optimizes the number of train operations, sections, and stops to reduce costs, balance occupancy rates, minimize travel time, and enhance travel satisfaction. The practical applicability of MOGOA in optimizing train operation plans based on dynamic passenger flow allocation is significant. |
| Author | Wang, Xiao-Yang Ma, Xiao-Long Ni, Shao-Quan Zhao, Ming-Li Tian, Ai-Qing Du, Zhi-Gang |
| Author_xml | – sequence: 1 givenname: Ming-Li surname: Zhao fullname: Zhao, Ming-Li organization: Zhengzhou Railway Vocational and Technical College, Zhengzhou, China – sequence: 2 givenname: Shao-Quan surname: Ni fullname: Ni, Shao-Quan organization: School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, China – sequence: 3 givenname: Zhi-Gang orcidid: 0000-0001-6380-889X surname: Du fullname: Du, Zhi-Gang organization: School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, China – sequence: 4 givenname: Xiao-Yang surname: Wang fullname: Wang, Xiao-Yang organization: School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, China – sequence: 5 givenname: Ai-Qing orcidid: 0000-0003-0808-2015 surname: Tian fullname: Tian, Ai-Qing email: stones12138@163.com organization: School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, China – sequence: 6 givenname: Xiao-Long surname: Ma fullname: Ma, Xiao-Long organization: China Railway Zhengzhou Group Company Ltd., Zhengzhou, China |
| BookMark | eNp9kV1PHCEYhYnRRKv-gvZikl7Plo9hBi43W7UmmjXRXhNgXrZsZmHLsK3664uOTdQLuQBy8pyTF84ntB9iAIQ-EzwjBMtv88Xi7PZ2RjFlM8aIoC3dQ0eUtLJmnLX7r-6H6HQc17gsUSTeHaH7692Qfb00a7DZ_4HqQocAuVpus9_4R519DNV8WMXk869N5WKqvj8EvfG2utHjCGEFqTof4t8CDdFOvA_VXdJlX24hTdLNoMOb0BN04PQwwunLeYx-np_dLX7UV8uLy8X8qrYNlrl2gmKhDeetpMwJ0mNL2s7YHkjrcN_onhMhNeONE4JqXCjWMccNNgZby9gxupxy-6jXapv8RqcHFbVXz0JMK6VT9nYA1QqhuQUgsiGNgN6YhptOcu0sCNHZkvV1ytqm-HsHY1bruEuhjK-o6GjDRSdooeRE2RTHMYFT1ufnN-fyKYMiWD31pqbe1FNv6qW34mXvvP8n_tj1ZXJ5AHjloC0hkrN_2x2nZA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3438308 crossref_primary_10_1007_s00231_024_03469_w crossref_primary_10_1016_j_aej_2025_03_139 crossref_primary_10_1007_s13198_025_02854_w crossref_primary_10_1007_s41870_024_02388_7 |
| Cites_doi | 10.1016/j.tra.2015.03.013 10.32604/cmc.2023.031304 10.3390/math8030333 10.3233/JIFS-191866 10.1109/LISS.2018.8593272 10.1016/j.cie.2018.03.015 10.1109/ACCESS.2020.2964783 10.1007/s10489-021-02302-9 10.1109/TEVC.2023.3250552 10.1016/j.eswa.2019.01.068 10.1007/s11276-023-03351-3 10.1109/4235.996017 10.3390/math11020439 10.1016/j.asoc.2022.108736 10.1016/j.cor.2011.01.013 10.1109/TEVC.2017.2754271 10.1109/TEVC.2009.2021467 10.1016/j.ins.2023.118990 10.1016/j.tre.2017.11.003 10.1016/j.swevo.2022.101196 10.1016/j.psep.2023.03.056 10.1177/0361198118781665 10.1016/j.omega.2015.11.003 10.1007/s00500-022-06862-x 10.1108/IJICC-05-2017-0050 10.1109/TCSII.2022.3181827 10.1016/j.knosys.2021.106939 10.3390/electronics11081208 10.1109/TEVC.2010.2059031 10.1016/j.renene.2019.05.024 10.1016/j.energy.2022.124249 10.1155/2019/7509586 10.1016/j.asoc.2023.110311 10.1007/s41870-023-01192-z 10.1007/978-3-540-36668-3_94 10.3390/math10030300 10.1016/j.energy.2022.123863 10.1088/1361-6501/acd26c 10.1016/j.matcom.2022.06.007 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3318262 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 103711 |
| ExternalDocumentID | oai_doaj_org_article_688a5cee194148edbb45b795afce887c 10_1109_ACCESS_2023_3318262 10261195 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Shenhua Energy Company Ltd. Science and Technology Program grantid: CJNY-20-02 – fundername: China Railway Beijing Bureau Group Company Ltd. Science and Technology Program grantid: 2021BY02; 2020AY02 funderid: 10.13039/100015860 – fundername: National Natural Science Foundation of China grantid: 52072314; 52172321; 52102391 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2017YFB1200702 funderid: 10.13039/501100012166 – fundername: Science and Technology Plan of China Railway Corporation grantid: 2019F002 funderid: 10.13039/100015860 – fundername: Sichuan Science and Technology Program grantid: 2020YJ0268; 2020YJ0256; 2021YFQ-0001; 2021YFH0175 funderid: 10.13039/100012542 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-f8208ab556923f81d0c167bcde16f0d4ad5189a354f882a0923373f5b0bb0cc33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001080359300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:29:57 EDT 2025 Mon Jun 30 06:23:32 EDT 2025 Sat Nov 29 06:25:07 EST 2025 Tue Nov 18 22:15:14 EST 2025 Wed Aug 27 02:50:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-f8208ab556923f81d0c167bcde16f0d4ad5189a354f882a0923373f5b0bb0cc33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6380-889X 0000-0003-0808-2015 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10261195 |
| PQID | 2872458782 |
| PQPubID | 4845423 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2872458782 doaj_primary_oai_doaj_org_article_688a5cee194148edbb45b795afce887c crossref_citationtrail_10_1109_ACCESS_2023_3318262 ieee_primary_10261195 crossref_primary_10_1109_ACCESS_2023_3318262 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref22 ref21 ref28 ref27 ref29 ref8 zhang (ref7) 2014 ref9 ref4 ref3 ref6 ref5 ref40 mansouri (ref33) 2022; 54 liang (ref41) 2019 |
| References_xml | – ident: ref3 doi: 10.1016/j.tra.2015.03.013 – ident: ref36 doi: 10.32604/cmc.2023.031304 – ident: ref20 doi: 10.3390/math8030333 – ident: ref5 doi: 10.3233/JIFS-191866 – ident: ref8 doi: 10.1109/LISS.2018.8593272 – ident: ref37 doi: 10.1016/j.cie.2018.03.015 – ident: ref19 doi: 10.1109/ACCESS.2020.2964783 – ident: ref12 doi: 10.1007/s10489-021-02302-9 – ident: ref34 doi: 10.1109/TEVC.2023.3250552 – ident: ref25 doi: 10.1016/j.eswa.2019.01.068 – ident: ref31 doi: 10.1007/s11276-023-03351-3 – ident: ref24 doi: 10.1109/4235.996017 – ident: ref30 doi: 10.3390/math11020439 – ident: ref11 doi: 10.1016/j.asoc.2022.108736 – ident: ref4 doi: 10.1016/j.cor.2011.01.013 – ident: ref40 doi: 10.1109/TEVC.2017.2754271 – ident: ref42 doi: 10.1109/TEVC.2009.2021467 – ident: ref39 doi: 10.1016/j.ins.2023.118990 – ident: ref1 doi: 10.1016/j.tre.2017.11.003 – ident: ref27 doi: 10.1016/j.swevo.2022.101196 – ident: ref35 doi: 10.1016/j.psep.2023.03.056 – ident: ref6 doi: 10.1177/0361198118781665 – ident: ref2 doi: 10.1016/j.omega.2015.11.003 – ident: ref17 doi: 10.1007/s00500-022-06862-x – ident: ref26 doi: 10.1108/IJICC-05-2017-0050 – ident: ref21 doi: 10.1109/TCSII.2022.3181827 – ident: ref13 doi: 10.1016/j.knosys.2021.106939 – ident: ref10 doi: 10.3390/electronics11081208 – ident: ref15 doi: 10.1109/TEVC.2010.2059031 – ident: ref22 doi: 10.1016/j.renene.2019.05.024 – ident: ref38 doi: 10.1016/j.energy.2022.124249 – start-page: 2398 year: 2014 ident: ref7 article-title: Optimizing the high speed train stop schedule using flexible stopping patterns combination publication-title: Proc 17th Int IEEE Conf Intell Transp Syst (ITSC) – ident: ref9 doi: 10.1155/2019/7509586 – year: 2019 ident: ref41 article-title: Problem definitions and evaluation criteria for the CEC 2020 special session on multimodal multiobjective optimization – ident: ref23 doi: 10.1016/j.asoc.2023.110311 – ident: ref32 doi: 10.1007/s41870-023-01192-z – ident: ref14 doi: 10.1007/978-3-540-36668-3_94 – volume: 54 start-page: 49 year: 2022 ident: ref33 article-title: An efficient gannet optimization algorithm for feature selection based on sensitivity and specificity publication-title: Computer Algorithms – ident: ref16 doi: 10.3390/math10030300 – ident: ref18 doi: 10.1016/j.energy.2022.123863 – ident: ref28 doi: 10.1088/1361-6501/acd26c – ident: ref29 doi: 10.1016/j.matcom.2022.06.007 |
| SSID | ssj0000816957 |
| Score | 2.2921252 |
| Snippet | This paper proposes a multi-objective Gannet Optimization Algorithm (MOGOA) to address the issue of unbalanced train occupancy rates in railway train operation... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 103693 |
| SubjectTerms | adaptive multi-population co-evolutionary strategy Costs Heuristic algorithms Multi-objective optimization Multiple objective analysis non-dominated sorting algorithm based on the crowding distance Optimization Passengers Planning Rail transportation Search problems Sorting Sorting algorithms train operation plan problem Travel time |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXQigM9VBS2agqtfOBIFie24_i4XbpwQMABEDfLdux2q2W3Whban9_xByioEr30Gk3s2DOeeRON5yF0ABjVuaoxpQmljayyutRUkFIy4SA--raLxeM3Z-L8vL29lZc9qq9QE5baA6eNO2raVnPw5JBsA3J3nTGMGyG59tbBAbHB-xIhe8lU9MFt1Ugucpuhisij8WQCKxoFtvARpQFV1y9CUezYnylW_vLLMdhMt9HbjBLxOH3dO7ThFjvoTa934C76Ha_OlhfmR3JZ-ESHGzb4AnzAXb5cicfzb0vI_r_fYcCm-Dixz-NLAMyhmHWFp_PlLxAKAS3Kzxb4KnBGwCgumQYOrEYvBh2i6-nXq8lpmWkUSgvJ27r0EORbbThvAMx5wKfEVo0wtgMdedIx3fGqlZpy5gFuawJSVFDPDTGGWEvpezRYLBfuA8JacOE1gBjHHNOUatbURFrwUZbX3psC1U87qmzuMR6oLuYq5hpEqqQGFdSgshoKdPj80s_UYuN18S9BVc-ioT92fABWo7LVqH9ZTYGGQdG9-SCTrCQv0P6T5lU-zPcKksqa8Raw1Mf_Mfce2grrSf9x9tFgvXpwn9CmfVzP7lefox3_Aexs9eM priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-Objective Gannet Optimization Algorithm for Dynamic Passenger Flow Allocation in Train Operation Plan Optimization |
| URI | https://ieeexplore.ieee.org/document/10261195 https://www.proquest.com/docview/2872458782 https://doaj.org/article/688a5cee194148edbb45b795afce887c |
| Volume | 11 |
| WOSCitedRecordID | wos001080359300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVoxQEOlI8iti2VDxzJ4sR2HB-XpQsHaHsoqDfLdmy6aLuLttvCqb-9M7a7aoVA4hJF0dhx9OyZN45nhpA3wFFDqFtXOTzaKGpvK8sVq7RQAexj7Pp0ePzbZ3V42J2e6uMSrJ5iYUII6fBZGOJt-pffL_wlbpXBCge-X2u5QTaUanOw1npDBStIaKlKZqGa6Xej8Rg-YogFwoecI5Fu7lmflKS_VFX5QxUn-zLZ-s-RPSVPCpGko4z8M_IgzJ-Tx3fSC74gv1N0bXXkfmStRj9aDMKhR6Amzkv8JR3Nvi-W09XZOQX6Sj_kAvX0GDg1nndd0sls8QuE0OYl-emcnmBZCegl5NlDsfDRvU63ydfJwcn4U1UqLVQe_LtVFYEHdNZJ2QLfi0Bhma9b5XwPMEbWC9vLutOWSxGBkVsGUlzxKB1zjnnP-UuyOV_MwytCrZIqWuA5QQRhObeibZj2oMa8bGJ0A9LcImB8SUOO1TBmJrkjTJsMm0HYTIFtQN6uG_3MWTj-Lf4eoV2LYgrt9AAwM2VFmrbrrASKUGsBLmHonRPSKS1t9AE0rx-QbcT5zvsyxAOydztTTFnvFwb8zkbIDujWzl-a7ZJHOMS8e7NHNlfLy_CaPPRXq-nFcj9tBcD1y_XBfprWN1On9JM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BQYIeeLYiUMAHjmzwru3d9TENhCJC2kNAvVm214ZUaVKlKfDzO340aoVA4rZajb27-uyZb7zzAHiDHNW5sjaFCaGNvLS60KyhheSNQ_vo2y4Gj38bN5NJe3wsj3KyesyFcc7F4DPXD5fxX363tBfhqAx3OPL9UorbcEdwXtGUrrU5Ugk9JKRocm2hksp3g-EQP6MfWoT3GQtUurphf2KZ_txX5Q9lHC3M6OF_vtsjeJCpJBkk7B_DLbd4AtvXCgw-hd8xv7Y4NCdJr5GPOqThkENUFKc5A5MM5t-Xq9n6xylBAkvepxb15AhZdYh4XZHRfPkLhYLVi_KzBZmGxhI4i0vrh4TWRzcm3YGvow_T4UGRey0UFj28deGRCbTaCFEj4_NIYqkt68bYDoH0tOO6E2UrNRPcIyfXFKVYw7ww1BhqLWO7sLVYLtwzILoRjdfIdBx3XDOmeV1RaVGRWVF5b3pQXSGgbC5EHvphzFV0SKhUCTYVYFMZth683Qw6S3U4_i2-H6DdiIYi2vEGYqbynlR122qBJKGUHJ1C1xnDhWmk0N461L22BzsB52vPSxD3YO9qpai8488Vep4VFy0Srud_GfYa7h1Mv4zV-NPk8wu4H143neXswdZ6deFewl37cz07X72Ky_oSpbr1tA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Gannet+Optimization+Algorithm+for+Dynamic+Passenger+Flow+Allocation+in+Train+Operation+Plan+Optimization&rft.jtitle=IEEE+access&rft.au=Zhao%2C+Ming-Li&rft.au=Ni%2C+Shao-Quan&rft.au=Du%2C+Zhi-Gang&rft.au=Wang%2C+Xiao-Yang&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=103693&rft.epage=103711&rft_id=info:doi/10.1109%2FACCESS.2023.3318262&rft.externalDocID=10261195 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |