Multi-Objective Gannet Optimization Algorithm for Dynamic Passenger Flow Allocation in Train Operation Plan Optimization

This paper proposes a multi-objective Gannet Optimization Algorithm (MOGOA) to address the issue of unbalanced train occupancy rates in railway train operation planning. MOGOA employs an adaptive multi-population co-evolutionary strategy to balance exploration and exploitation, utilizing a non-domin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 11; s. 103693 - 103711
Hlavní autoři: Zhao, Ming-Li, Ni, Shao-Quan, Du, Zhi-Gang, Wang, Xiao-Yang, Tian, Ai-Qing, Ma, Xiao-Long
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a multi-objective Gannet Optimization Algorithm (MOGOA) to address the issue of unbalanced train occupancy rates in railway train operation planning. MOGOA employs an adaptive multi-population co-evolutionary strategy to balance exploration and exploitation, utilizing a non-dominated sorting algorithm based on crowding distance to select parent and child samples. These samples serve as initial solutions for subsequent iterations. A novel maximin fitness function guides the iterative update of the global optimal position. MOGOA is applied to the train operation planning problem with dynamic passenger flow allocation feedback. It collaboratively optimizes the number of train operations, sections, and stops to reduce costs, balance occupancy rates, minimize travel time, and enhance travel satisfaction. The practical applicability of MOGOA in optimizing train operation plans based on dynamic passenger flow allocation is significant.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3318262