An output-sensitive algorithm for persistent homology
In this paper, we present the first output-sensitive algorithm to compute the persistence diagram of a filtered simplicial complex. For any Γ>0, it returns only those homology classes with persistence at least Γ. Instead of the classical reduction via column operations, our algorithm performs ran...
Uloženo v:
| Vydáno v: | Computational geometry : theory and applications Ročník 46; číslo 4; s. 435 - 447 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.05.2013
|
| Témata: | |
| ISSN: | 0925-7721 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we present the first output-sensitive algorithm to compute the persistence diagram of a filtered simplicial complex. For any Γ>0, it returns only those homology classes with persistence at least Γ. Instead of the classical reduction via column operations, our algorithm performs rank computations on submatrices of the boundary matrix. For an arbitrary constant δ∈(0,1), the running time is O(C(1−δ)ΓRd(n)logn), where C(1−δ)Γ is the number of homology classes with persistence at least (1−δ)Γ, n is the total number of simplices in the complex, d its dimension, and Rd(n) is the complexity of computing the rank of an n×n matrix with O(dn) nonzero entries. Depending on the choice of the rank algorithm, this yields a deterministic O(C(1−δ)Γn2.376) algorithm, an O(C(1−δ)Γn2.28) Las-Vegas algorithm, or an O(C(1−δ)Γn2+ϵ) Monte-Carlo algorithm for an arbitrary ϵ>0. The space complexity of the Monte-Carlo version is bounded by O(dn)=O(nlogn). |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0925-7721 |
| DOI: | 10.1016/j.comgeo.2012.02.010 |