Boosting Cyberattack Detection Using Binary Metaheuristics With Deep Learning on Cyber-Physical System Environment
The swift advancement of cyber-physical systems (CPSs) across sectors such as healthcare, transportation, critical infrastructure, and energy enhances the crucial requirement for robust cybersecurity measures to protect these systems from cyberattacks. The cyber-physical method is a hybrid of cyber...
Uložené v:
| Vydané v: | IEEE access Ročník 13; s. 11280 - 11294 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The swift advancement of cyber-physical systems (CPSs) across sectors such as healthcare, transportation, critical infrastructure, and energy enhances the crucial requirement for robust cybersecurity measures to protect these systems from cyberattacks. The cyber-physical method is a hybrid of cyber and physical components, and a safety breach in the element is central to catastrophic consequences. Cyberattack recognition and mitigation techniques in CPSs include using numerous models like intrusion detection systems (IDSs), access control mechanisms, encryption, and firewalls. Cyberattack detection employing deep learning (DL) contains training neural networks to identify patterns indicative of malicious actions within system logs or network traffic, allowing positive classification and mitigation of cyber-attacks. By leveraging the integral ability of DL methods to learn complex representations, this technique enhances the accuracy and efficiency of detecting diverse and growing cyber-attacks. Thus, the study proposes an automated Cyberattack Detection using Binary Metaheuristics with Deep Learning (ACAD-BMDL) method in a CPS environment. The ACAD-BMDL method mainly focuses on enhancing security in the CPS environment via the cyberattack detection process. The ACAD-BMDL method uses Z-score normalization to scale the input dataset. In addition, the binary grey wolf optimizer (BGWO) model is utilized to choose an optimal feature subset. Moreover, the Enhanced Elman Spike Neural Network (EESNN) model detects cyber-attacks. Furthermore, the Archimedes Optimization Algorithm (AOA) model is employed to select the optimum hyperparameter for the EESNN model. The empirical analysis of the ACAD-BMDL technique is performed on a benchmark dataset. The experimental validation of the ACAD-BMDL technique portrayed a superior accuracy value of 99.12% and 99.36% under NSLKDD2015 and CICIDS2017 datasets in the CPS environment. |
|---|---|
| AbstractList | The swift advancement of cyber-physical systems (CPSs) across sectors such as healthcare, transportation, critical infrastructure, and energy enhances the crucial requirement for robust cybersecurity measures to protect these systems from cyberattacks. The cyber-physical method is a hybrid of cyber and physical components, and a safety breach in the element is central to catastrophic consequences. Cyberattack recognition and mitigation techniques in CPSs include using numerous models like intrusion detection systems (IDSs), access control mechanisms, encryption, and firewalls. Cyberattack detection employing deep learning (DL) contains training neural networks to identify patterns indicative of malicious actions within system logs or network traffic, allowing positive classification and mitigation of cyber-attacks. By leveraging the integral ability of DL methods to learn complex representations, this technique enhances the accuracy and efficiency of detecting diverse and growing cyber-attacks. Thus, the study proposes an automated Cyberattack Detection using Binary Metaheuristics with Deep Learning (ACAD-BMDL) method in a CPS environment. The ACAD-BMDL method mainly focuses on enhancing security in the CPS environment via the cyberattack detection process. The ACAD-BMDL method uses Z-score normalization to scale the input dataset. In addition, the binary grey wolf optimizer (BGWO) model is utilized to choose an optimal feature subset. Moreover, the Enhanced Elman Spike Neural Network (EESNN) model detects cyber-attacks. Furthermore, the Archimedes Optimization Algorithm (AOA) model is employed to select the optimum hyperparameter for the EESNN model. The empirical analysis of the ACAD-BMDL technique is performed on a benchmark dataset. The experimental validation of the ACAD-BMDL technique portrayed a superior accuracy value of 99.12% and 99.36% under NSLKDD2015 and CICIDS2017 datasets in the CPS environment. |
| Author | Al Mazroa, Alanoud Albogamy, Fahad R. Khairi Ishak, Mohamad Mostafa, Samih M. |
| Author_xml | – sequence: 1 givenname: Alanoud orcidid: 0000-0002-6201-0410 surname: Al Mazroa fullname: Al Mazroa, Alanoud organization: Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh, Saudi Arabia – sequence: 2 givenname: Fahad R. orcidid: 0000-0002-2783-860X surname: Albogamy fullname: Albogamy, Fahad R. email: f.alhammdani@tu.edu.sa organization: Turabah University College, Computer Sciences Program, Taif University, Taif, Saudi Arabia – sequence: 3 givenname: Mohamad orcidid: 0000-0002-3554-0061 surname: Khairi Ishak fullname: Khairi Ishak, Mohamad organization: Department of Electrical and Computer Engineering, College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates – sequence: 4 givenname: Samih M. orcidid: 0000-0001-9234-5898 surname: Mostafa fullname: Mostafa, Samih M. organization: Computer Science Department, Faculty of Computers and Information, South Valley University, Qena, Egypt |
| BookMark | eNp9kU9rGzEQxUVJoGmaT9AeFnpeR38s7e4x2bptwKUBJ-QoZrWzsVxbciU54G9fbTaB0EN1kRi932Nm3gdy4rxDQj4xOmOMNpdXbbtYrWaccjkTkisu63fkjDPVlEIKdfLm_Z5cxLih-dS5JKszEq69j8m6x6I9dhggJTC_i6-Y0CTrXXEfx79r6yAci5-YYI2HYDNhYvFg0zpLcV8sEYIbhZl49ilv18doDWyL1TEm3BUL92SDdzt06SM5HWAb8eLlPif33xZ37Y9y-ev7TXu1LM2cNqk0yAaspOE18K7qOmQdMz1S2gkJAEJ0_cB4z1Uvaq4Eh4EKCgoUAzSUCXFObibf3sNG74Pd5Rm0B6ufCz48agh5kC3qaq54B9zIOVNzPgiooa9qhj2VQ1N3LHt9mbz2wf85YEx64w_B5fa1YLLmjAnZZFUzqUzwMQYctLEJxj2mAHarGdVjYnpKTI-J6ZfEMiv-YV87_j_1eaIsIr4hat5IxcVfGv6lng |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1038_s41598_025_91500_3 crossref_primary_10_1038_s41598_025_93549_6 |
| Cites_doi | 10.1007/s12083-023-01507-8 10.3390/fi13050111 10.1186/s42400-021-00103-8 10.3390/en16010042 10.3390/sym12061046 10.1002/nem.2247 10.4018/IJSIR.304402 10.3390/s23104804 10.1109/TIFS.2022.3214723 10.1186/s12859-024-05657-1 10.1038/s41598-022-17043-z 10.1109/TCE.2023.3325827 10.1186/s40537-021-00531-w 10.1109/ACCESS.2024.3350197 10.32604/iasc.2022.026628 10.1007/978-981-99-3734-9_42 10.32604/cmc.2021.016113 10.3934/math.2024731 10.1016/j.compeleceng.2023.108768 10.2478/jsiot-2023-0008 10.1109/ACCESS.2023.3332213 10.1007/s11235-023-01096-0 10.32604/cmc.2022.027475 10.1016/j.iot.2023.101046 10.3390/s22041448 10.1007/s11227-023-05677-3 10.1016/j.aej.2023.10.055 10.3389/fcomp.2023.997159 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3526258 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 11294 |
| ExternalDocumentID | oai_doaj_org_article_7462ba2c541642f3a8ad781ed05f98b1 10_1109_ACCESS_2025_3526258 10829562 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Taif University, Taif, Saudi Arabia grantid: TU-DSPP-2024-129 funderid: 10.13039/501100006261 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-ce1fe75c28a2b7bbe1b1cde00b35aaa33bdf12d26d382632af030a6a61aec0133 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403265600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:23 EDT 2025 Mon Jun 30 13:07:27 EDT 2025 Tue Nov 18 22:52:11 EST 2025 Sat Nov 29 04:27:18 EST 2025 Wed Aug 27 01:55:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-ce1fe75c28a2b7bbe1b1cde00b35aaa33bdf12d26d382632af030a6a61aec0133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3554-0061 0000-0001-9234-5898 0000-0002-6201-0410 0000-0002-2783-860X |
| OpenAccessLink | https://doaj.org/article/7462ba2c541642f3a8ad781ed05f98b1 |
| PQID | 3158211359 |
| PQPubID | 4845423 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3526258 ieee_primary_10829562 proquest_journals_3158211359 doaj_primary_oai_doaj_org_article_7462ba2c541642f3a8ad781ed05f98b1 crossref_citationtrail_10_1109_ACCESS_2025_3526258 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 (ref28) 2024 ref2 ref1 ref17 ref16 ref19 ref18 (ref27) 2024 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1007/s12083-023-01507-8 – ident: ref2 doi: 10.3390/fi13050111 – volume-title: NSLKDD2015 Dataset year: 2024 ident: ref27 – ident: ref3 doi: 10.1186/s42400-021-00103-8 – ident: ref1 doi: 10.3390/en16010042 – ident: ref8 doi: 10.3390/sym12061046 – ident: ref11 doi: 10.1002/nem.2247 – ident: ref18 doi: 10.4018/IJSIR.304402 – ident: ref29 doi: 10.3390/s23104804 – ident: ref9 doi: 10.1109/TIFS.2022.3214723 – ident: ref24 doi: 10.1186/s12859-024-05657-1 – ident: ref10 doi: 10.1038/s41598-022-17043-z – ident: ref19 doi: 10.1109/TCE.2023.3325827 – ident: ref7 doi: 10.1186/s40537-021-00531-w – ident: ref25 doi: 10.1109/ACCESS.2024.3350197 – ident: ref16 doi: 10.32604/iasc.2022.026628 – volume-title: CICIDS2017 Dataset year: 2024 ident: ref28 – ident: ref13 doi: 10.1007/978-981-99-3734-9_42 – ident: ref4 doi: 10.32604/cmc.2021.016113 – ident: ref22 doi: 10.3934/math.2024731 – ident: ref14 doi: 10.1016/j.compeleceng.2023.108768 – ident: ref15 doi: 10.2478/jsiot-2023-0008 – ident: ref30 doi: 10.1109/ACCESS.2023.3332213 – ident: ref20 doi: 10.1007/s11235-023-01096-0 – ident: ref5 doi: 10.32604/cmc.2022.027475 – ident: ref12 doi: 10.1016/j.iot.2023.101046 – ident: ref6 doi: 10.3390/s22041448 – ident: ref23 doi: 10.1007/s11227-023-05677-3 – ident: ref26 doi: 10.1016/j.aej.2023.10.055 – ident: ref21 doi: 10.3389/fcomp.2023.997159 |
| SSID | ssj0000816957 |
| Score | 2.3885484 |
| Snippet | The swift advancement of cyber-physical systems (CPSs) across sectors such as healthcare, transportation, critical infrastructure, and energy enhances the... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11280 |
| SubjectTerms | Access control Accuracy Adaptation models Algorithms Archimedes optimization algorithm Communications traffic Computational modeling Critical infrastructure Cyber-physical systems Cyberattack cyberattack detection Cybersecurity Data models Datasets Deep learning Empirical analysis Feature extraction Heuristic methods Intrusion detection systems Machine learning metaheuristics Neural networks Optimization Security |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELag6gEOfaNuH8gHjqTEThzbx-7SqheqHkD0ZvkxphXVbrWbReLfd-y4y0oIpN6iyE7sfLbnkZlvCPnQgQIU8wLNkhCrVkVbaaGaSukuWJRfXkDMxSbk9bW6vdU3JVk958IAQA4-g7N0mf_lh5lfJlcZ7nDFUZ_HE_e1lHJI1lo5VFIFCS1kYRZitf50PpngJNAG5OIs0cDzVNd9Tfpkkv5SVeWvozjLl8vtF45sh2wVRZKeD8jvklcw3SNv1-gF98l8PJstUlgznfx2iTy5t_4n_Qx9Dr-a0hwuQMc5I5d-gd7ewbIQN9Pv9_0dNoVHWhhYf1DskZ9T3RRs6UB3Ti_-JMsdkG-XF18nV1WpsVB5tOz6ygOLIIXnynInnQPmmA9Q164R1tqmcSEyHngXGpWo3W3EU8F2tmMWPKqPzTuyMZ1N4ZBQH1PFiBBboVjrW6d5F13dRh0YB6XEiPDnb298ISBPdTAeTDZEam0GwEwCzBTARuTjqtPjwL_x_-bjBOqqaSLPzjcQLVP2opFtx53lXqAy2vLYWGWDVAxCLaJWjo3IQUJ47X0DuCNy8rxGTNnpC4NTVmhEN0If_aPbMXmThjj4bU7IRj9fwinZ9L_6-8X8fV7ET3Z18NA priority: 102 providerName: IEEE |
| Title | Boosting Cyberattack Detection Using Binary Metaheuristics With Deep Learning on Cyber-Physical System Environment |
| URI | https://ieeexplore.ieee.org/document/10829562 https://www.proquest.com/docview/3158211359 https://doaj.org/article/7462ba2c541642f3a8ad781ed05f98b1 |
| Volume | 13 |
| WOSCitedRecordID | wos001403265600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKE9VLyqLi_5wJGU2IkT-8gui7iAOFCVm-XHuKBWu6vdgMSF387YMTQSUnvpJYfITmJ_Y8980fgbQo4akIBuXiAt8aGoZTCFErIqpGq8Qf_lBIRUbKK9upK3t-p6UOor5oT18sD9xJ20dcOt4U5g5FDzUBlpfCsZ-FIEJW0iPhj1DMhU2oMla5Ros8wQK9XJ6WSCI0JCyMW3qAnPY5H3gStKiv25xMq7fTk5m_MN8jlHifS0_7pN8gFmW-TTQDtwmyzH8_kq5izTyZONysidcb_oGXQpt2pGUy4AHafjtvQSOnMHD1mVmf647-6wKSxollf9SbFHek5xnYGjvZY5nf45CbdDvp9PbyYXRS6gUDikbV3hgAVohePScNtaC8wy56EsbSWMMVVlfWDc88ZXMuq2m4BL3jSmYQYcxobVF7I2m8_gK6EuxHIQPtRCstrVVvEm2LIOyjMOUooR4a9zqV1WF49FLn7rxDJKpXsAdARAZwBG5Pit06IX1_h783EE6a1pVMZON9BedLYX_S97GZGdCPHgfZIjR-Qjsv-Kuc7LeKVxyBIZciXU7v949x75GMfT_8HZJ2vd8gEOyLp77O5Xy8NkwXi9fJ4epnOIL5Et9QM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hFgk4lFcRCwV84EhK7NiJfewurYpoVz0U0Zvlx5hWrXar3SwS_x7bcZeVEEjcoshO7Hy255GZbwDetygxinkRzRIfKi6DqZSQTSVV602UX05gyMUmuulUXlyos5KsnnNhEDEHn-F-usz_8v3crZKrLO5wyaI-H0_cbcE5o0O61tqlkmpIKNEVbiFaq48Hk0mcRrQCmdhPRPAsVXbfkD-Zpr_UVfnjMM4S5ujxf47tCewUVZIcDNg_hXs4ewaPNggGn8NiPJ8vU2Azmfy0iT65N-6afMI-B2DNSA4YIOOck0tOsTeXuCrUzeTbVX8Zm-ItKRys30nskZ9TnRV0yUB4Tg5_p8vtwtejw_PJcVWqLFQu2nZ95ZAG7IRj0jDbWYvUUuexrm0jjDFNY32gzLPWNzKRu5sQzwXTmpYadFGBbF7A1mw-w5dAXEg1I3zgQlLuuFWsDbbmQXnKUEoxAnb37bUrFOSpEsaNzqZIrfQAmE6A6QLYCD6sO90ODBz_bj5OoK6bJvrsfCOipctu1B1vmTXMiaiOchYaI43vJEVfi6CkpSPYTQhvvG8AdwR7d2tEl72-1HHKMprRjVCv_tLtHTw4Pj890Sefp19ew8M03MGLswdb_WKFb-C--9FfLRdv84L-BR0f9Bc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+Cyberattack+Detection+Using+Binary+Metaheuristics+With+Deep+Learning+on+Cyber-Physical+System+Environment&rft.jtitle=IEEE+access&rft.au=Al+Mazroa%2C+Alanoud&rft.au=Albogamy%2C+Fahad+R.&rft.au=Khairi+Ishak%2C+Mohamad&rft.au=Mostafa%2C+Samih+M.&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=11280&rft.epage=11294&rft_id=info:doi/10.1109%2FACCESS.2025.3526258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3526258 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |