Boosting Cyberattack Detection Using Binary Metaheuristics With Deep Learning on Cyber-Physical System Environment

The swift advancement of cyber-physical systems (CPSs) across sectors such as healthcare, transportation, critical infrastructure, and energy enhances the crucial requirement for robust cybersecurity measures to protect these systems from cyberattacks. The cyber-physical method is a hybrid of cyber...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 13; s. 11280 - 11294
Hlavní autori: Al Mazroa, Alanoud, Albogamy, Fahad R., Khairi Ishak, Mohamad, Mostafa, Samih M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The swift advancement of cyber-physical systems (CPSs) across sectors such as healthcare, transportation, critical infrastructure, and energy enhances the crucial requirement for robust cybersecurity measures to protect these systems from cyberattacks. The cyber-physical method is a hybrid of cyber and physical components, and a safety breach in the element is central to catastrophic consequences. Cyberattack recognition and mitigation techniques in CPSs include using numerous models like intrusion detection systems (IDSs), access control mechanisms, encryption, and firewalls. Cyberattack detection employing deep learning (DL) contains training neural networks to identify patterns indicative of malicious actions within system logs or network traffic, allowing positive classification and mitigation of cyber-attacks. By leveraging the integral ability of DL methods to learn complex representations, this technique enhances the accuracy and efficiency of detecting diverse and growing cyber-attacks. Thus, the study proposes an automated Cyberattack Detection using Binary Metaheuristics with Deep Learning (ACAD-BMDL) method in a CPS environment. The ACAD-BMDL method mainly focuses on enhancing security in the CPS environment via the cyberattack detection process. The ACAD-BMDL method uses Z-score normalization to scale the input dataset. In addition, the binary grey wolf optimizer (BGWO) model is utilized to choose an optimal feature subset. Moreover, the Enhanced Elman Spike Neural Network (EESNN) model detects cyber-attacks. Furthermore, the Archimedes Optimization Algorithm (AOA) model is employed to select the optimum hyperparameter for the EESNN model. The empirical analysis of the ACAD-BMDL technique is performed on a benchmark dataset. The experimental validation of the ACAD-BMDL technique portrayed a superior accuracy value of 99.12% and 99.36% under NSLKDD2015 and CICIDS2017 datasets in the CPS environment.
AbstractList The swift advancement of cyber-physical systems (CPSs) across sectors such as healthcare, transportation, critical infrastructure, and energy enhances the crucial requirement for robust cybersecurity measures to protect these systems from cyberattacks. The cyber-physical method is a hybrid of cyber and physical components, and a safety breach in the element is central to catastrophic consequences. Cyberattack recognition and mitigation techniques in CPSs include using numerous models like intrusion detection systems (IDSs), access control mechanisms, encryption, and firewalls. Cyberattack detection employing deep learning (DL) contains training neural networks to identify patterns indicative of malicious actions within system logs or network traffic, allowing positive classification and mitigation of cyber-attacks. By leveraging the integral ability of DL methods to learn complex representations, this technique enhances the accuracy and efficiency of detecting diverse and growing cyber-attacks. Thus, the study proposes an automated Cyberattack Detection using Binary Metaheuristics with Deep Learning (ACAD-BMDL) method in a CPS environment. The ACAD-BMDL method mainly focuses on enhancing security in the CPS environment via the cyberattack detection process. The ACAD-BMDL method uses Z-score normalization to scale the input dataset. In addition, the binary grey wolf optimizer (BGWO) model is utilized to choose an optimal feature subset. Moreover, the Enhanced Elman Spike Neural Network (EESNN) model detects cyber-attacks. Furthermore, the Archimedes Optimization Algorithm (AOA) model is employed to select the optimum hyperparameter for the EESNN model. The empirical analysis of the ACAD-BMDL technique is performed on a benchmark dataset. The experimental validation of the ACAD-BMDL technique portrayed a superior accuracy value of 99.12% and 99.36% under NSLKDD2015 and CICIDS2017 datasets in the CPS environment.
Author Al Mazroa, Alanoud
Albogamy, Fahad R.
Khairi Ishak, Mohamad
Mostafa, Samih M.
Author_xml – sequence: 1
  givenname: Alanoud
  orcidid: 0000-0002-6201-0410
  surname: Al Mazroa
  fullname: Al Mazroa, Alanoud
  organization: Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh, Saudi Arabia
– sequence: 2
  givenname: Fahad R.
  orcidid: 0000-0002-2783-860X
  surname: Albogamy
  fullname: Albogamy, Fahad R.
  email: f.alhammdani@tu.edu.sa
  organization: Turabah University College, Computer Sciences Program, Taif University, Taif, Saudi Arabia
– sequence: 3
  givenname: Mohamad
  orcidid: 0000-0002-3554-0061
  surname: Khairi Ishak
  fullname: Khairi Ishak, Mohamad
  organization: Department of Electrical and Computer Engineering, College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
– sequence: 4
  givenname: Samih M.
  orcidid: 0000-0001-9234-5898
  surname: Mostafa
  fullname: Mostafa, Samih M.
  organization: Computer Science Department, Faculty of Computers and Information, South Valley University, Qena, Egypt
BookMark eNp9kU9rGzEQxUVJoGmaT9AeFnpeR38s7e4x2bptwKUBJ-QoZrWzsVxbciU54G9fbTaB0EN1kRi932Nm3gdy4rxDQj4xOmOMNpdXbbtYrWaccjkTkisu63fkjDPVlEIKdfLm_Z5cxLih-dS5JKszEq69j8m6x6I9dhggJTC_i6-Y0CTrXXEfx79r6yAci5-YYI2HYDNhYvFg0zpLcV8sEYIbhZl49ilv18doDWyL1TEm3BUL92SDdzt06SM5HWAb8eLlPif33xZ37Y9y-ev7TXu1LM2cNqk0yAaspOE18K7qOmQdMz1S2gkJAEJ0_cB4z1Uvaq4Eh4EKCgoUAzSUCXFObibf3sNG74Pd5Rm0B6ufCz48agh5kC3qaq54B9zIOVNzPgiooa9qhj2VQ1N3LHt9mbz2wf85YEx64w_B5fa1YLLmjAnZZFUzqUzwMQYctLEJxj2mAHarGdVjYnpKTI-J6ZfEMiv-YV87_j_1eaIsIr4hat5IxcVfGv6lng
CODEN IAECCG
CitedBy_id crossref_primary_10_1038_s41598_025_91500_3
crossref_primary_10_1038_s41598_025_93549_6
Cites_doi 10.1007/s12083-023-01507-8
10.3390/fi13050111
10.1186/s42400-021-00103-8
10.3390/en16010042
10.3390/sym12061046
10.1002/nem.2247
10.4018/IJSIR.304402
10.3390/s23104804
10.1109/TIFS.2022.3214723
10.1186/s12859-024-05657-1
10.1038/s41598-022-17043-z
10.1109/TCE.2023.3325827
10.1186/s40537-021-00531-w
10.1109/ACCESS.2024.3350197
10.32604/iasc.2022.026628
10.1007/978-981-99-3734-9_42
10.32604/cmc.2021.016113
10.3934/math.2024731
10.1016/j.compeleceng.2023.108768
10.2478/jsiot-2023-0008
10.1109/ACCESS.2023.3332213
10.1007/s11235-023-01096-0
10.32604/cmc.2022.027475
10.1016/j.iot.2023.101046
10.3390/s22041448
10.1007/s11227-023-05677-3
10.1016/j.aej.2023.10.055
10.3389/fcomp.2023.997159
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3526258
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 11294
ExternalDocumentID oai_doaj_org_article_7462ba2c541642f3a8ad781ed05f98b1
10_1109_ACCESS_2025_3526258
10829562
Genre orig-research
GrantInformation_xml – fundername: Taif University, Taif, Saudi Arabia
  grantid: TU-DSPP-2024-129
  funderid: 10.13039/501100006261
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-ce1fe75c28a2b7bbe1b1cde00b35aaa33bdf12d26d382632af030a6a61aec0133
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403265600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:23 EDT 2025
Mon Jun 30 13:07:27 EDT 2025
Tue Nov 18 22:52:11 EST 2025
Sat Nov 29 04:27:18 EST 2025
Wed Aug 27 01:55:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-ce1fe75c28a2b7bbe1b1cde00b35aaa33bdf12d26d382632af030a6a61aec0133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3554-0061
0000-0001-9234-5898
0000-0002-6201-0410
0000-0002-2783-860X
OpenAccessLink https://ieeexplore.ieee.org/document/10829562
PQID 3158211359
PQPubID 4845423
PageCount 15
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3526258
ieee_primary_10829562
proquest_journals_3158211359
doaj_primary_oai_doaj_org_article_7462ba2c541642f3a8ad781ed05f98b1
crossref_citationtrail_10_1109_ACCESS_2025_3526258
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
(ref28) 2024
ref2
ref1
ref17
ref16
ref19
ref18
(ref27) 2024
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1007/s12083-023-01507-8
– ident: ref2
  doi: 10.3390/fi13050111
– volume-title: NSLKDD2015 Dataset
  year: 2024
  ident: ref27
– ident: ref3
  doi: 10.1186/s42400-021-00103-8
– ident: ref1
  doi: 10.3390/en16010042
– ident: ref8
  doi: 10.3390/sym12061046
– ident: ref11
  doi: 10.1002/nem.2247
– ident: ref18
  doi: 10.4018/IJSIR.304402
– ident: ref29
  doi: 10.3390/s23104804
– ident: ref9
  doi: 10.1109/TIFS.2022.3214723
– ident: ref24
  doi: 10.1186/s12859-024-05657-1
– ident: ref10
  doi: 10.1038/s41598-022-17043-z
– ident: ref19
  doi: 10.1109/TCE.2023.3325827
– ident: ref7
  doi: 10.1186/s40537-021-00531-w
– ident: ref25
  doi: 10.1109/ACCESS.2024.3350197
– ident: ref16
  doi: 10.32604/iasc.2022.026628
– volume-title: CICIDS2017 Dataset
  year: 2024
  ident: ref28
– ident: ref13
  doi: 10.1007/978-981-99-3734-9_42
– ident: ref4
  doi: 10.32604/cmc.2021.016113
– ident: ref22
  doi: 10.3934/math.2024731
– ident: ref14
  doi: 10.1016/j.compeleceng.2023.108768
– ident: ref15
  doi: 10.2478/jsiot-2023-0008
– ident: ref30
  doi: 10.1109/ACCESS.2023.3332213
– ident: ref20
  doi: 10.1007/s11235-023-01096-0
– ident: ref5
  doi: 10.32604/cmc.2022.027475
– ident: ref12
  doi: 10.1016/j.iot.2023.101046
– ident: ref6
  doi: 10.3390/s22041448
– ident: ref23
  doi: 10.1007/s11227-023-05677-3
– ident: ref26
  doi: 10.1016/j.aej.2023.10.055
– ident: ref21
  doi: 10.3389/fcomp.2023.997159
SSID ssj0000816957
Score 2.3885484
Snippet The swift advancement of cyber-physical systems (CPSs) across sectors such as healthcare, transportation, critical infrastructure, and energy enhances the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11280
SubjectTerms Access control
Accuracy
Adaptation models
Algorithms
Archimedes optimization algorithm
Communications traffic
Computational modeling
Critical infrastructure
Cyber-physical systems
Cyberattack
cyberattack detection
Cybersecurity
Data models
Datasets
Deep learning
Empirical analysis
Feature extraction
Heuristic methods
Intrusion detection systems
Machine learning
metaheuristics
Neural networks
Optimization
Security
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKEcEG2p2JZWPvTYQGwndnJkF1APgDiUx83yYwwItLvaDUj8e8aOoZEqwYVr5Efsb2zPZ42_IeSXVQGpsZFF4G1dVKYxhbXKFy0wJM1GSp6uss-P1MlJc3nZng5SfcWYsF4euJ-4XVVJbg13NXoOFQ8CW_OqYeDLOrSNTcQHvZ4BmUp7cMNkW6ssM8TKdndvMsERISHk9U7UhOcxyfvgKEqK_TnFyn_7cjpsDjfIevYS6V7_d5_IB5h-JmsD7cAvZDGezZYxZplOHm1URu6Mu6X70KXYqilNsQB0nJ7b0mPozDXcZ1VmenHTXWNRmNMsr3pFsUZqpzjNwNFey5we_HsJt0nODg_-Tv4UOYFC4ZC2dYUDFkDVjjeGW2UtMMuch7K0ojbGCGF9YNxz6UUTddtNwCVvpEGQwKFvKL6SlelsCluEGi-4CFJC5X1VKYQEXR_GnAnocUGAEeHPc6ldVhePSS7udGIZZat7AHQEQGcARuT3S6V5L67xevFxBOmlaFTGTh_QXnS2F_2WvYzIZoR40F-DVir5iGw_Y67zMl5qweI7Yibq9tt79P2dfIzj6W9wtslKt7iHH2TVPXQ3y8XPZMFPftzzNg
  priority: 102
  providerName: Directory of Open Access Journals
Title Boosting Cyberattack Detection Using Binary Metaheuristics With Deep Learning on Cyber-Physical System Environment
URI https://ieeexplore.ieee.org/document/10829562
https://www.proquest.com/docview/3158211359
https://doaj.org/article/7462ba2c541642f3a8ad781ed05f98b1
Volume 13
WOSCitedRecordID wos001403265600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUAcSiHUiioSwH5wJFAbCdxcmSXRT0A4gAtN8sfY0CtdtFuFokLv71jxywrISr1EkXR2HHybGdmMvOGkAMjPZrGuso8b8qs0LXOjJEua4Ch0ayrikdX9s9zeXlZ3942VylZPebCAEAMPoOjcBr_5buxnQVXGa7wGnsMO-6ylLJL1po7VEIFiaaUiVmI5c3xyWCAD4E2IC-PAg08D3XdF74-kaQ_VVV5txXH78vZ-n-O7Av5nBRJetIhv0GWYLRJ1hboBb-SSX88noawZjp4NoE8udX2Nz2FNoZfjWgMF6D9mJFLL6DV9zBLxM3010N7j6LwSBMD6x3FFrGf7CphSzu6czp8S5bbIjdnw-vBjyzVWMgsWnZtZoF5kKXlteZGGgPMMOsgz40otdZCGOcZd7xyog7U7trjrqArjTiCRfVRbJOV0XgE3wjVTnDhqwoK54pCcoNCkjGrPSpl4KFH-Ou7VzYRkIc6GH9UNETyRnWAqQCYSoD1yOG80WPHv_Fv8X4AdS4ayLPjBURLpbWoZFHh4LgtURktuBc4QZ2sGbi89E1tWI9sBYQX7teB2yO7r3NEpZU-VYKFVGMmymbng2bfyacwxM5vs0tW2skM9siqfWofppP96ATA48XLcD9O6L8Y1_Nb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQcKI8iFkrxgSMpsR3HybG7bdWK7aqHFnqz_Bi3FWi32s0i8e8ZO-52JQRSb1E0dpx8fsxMZr4h5JNVAU1jUxeBt7KoTGMKa5UvWmBoNJu65smV_W2sJpPm8rI9y8nqKRcGAFLwGezFy_Qv38_cMrrKcIU32GPccR_JquKsT9dauVRiDYlWqswtxMr2y_5ohK-BViCXe5EInsfK7mvnT6Lpz3VV_tqM0wlztPXAsb0gz7MqSfd77F-SDZi-Is_WCAZfk_lwNlvEwGY6-m0jfXJn3A96AF0KwJrSFDBAhyknl55CZ65hmamb6feb7hpF4ZZmDtYrii1SP8VZRpf2hOf08D5dbptcHB2ej46LXGWhcGjbdYUDFkBJxxvDrbIWmGXOQ1laIY0xQlgfGPe89qKJ5O4m4L5gaoNIgkMFUrwhm9PZFN4SarzgItQ1VN5XleIWhRRjzgRUyyDAgPC7b69dpiCPlTB-6mSKlK3uAdMRMJ0BG5DPq0a3PQPH_8WHEdSVaKTPTjcQLZ1Xo1ZVjYPjTqI6WvEgcIp61TDwpQxtY9mAbEeE157XgzsgO3dzROe1vtCCxWRjJmT77h_NPpInx-enYz0-mXx9T57G4fZenB2y2c2X8IE8dr-6m8V8N03oP2ju9Hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+Cyberattack+Detection+Using+Binary+Metaheuristics+With+Deep+Learning+on+Cyber-Physical+System+Environment&rft.jtitle=IEEE+access&rft.au=Al+Mazroa%2C+Alanoud&rft.au=Albogamy%2C+Fahad+R.&rft.au=Khairi+Ishak%2C+Mohamad&rft.au=Mostafa%2C+Samih+M.&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=11280&rft.epage=11294&rft_id=info:doi/10.1109%2FACCESS.2025.3526258&rft.externalDocID=10829562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon