Modified Bald Eagle Search Algorithm with Deep Learning-Driven Sleep Quality Prediction for Healthcare Monitoring Systems
Sleep habits are strongly related to health behaviors, with sleep quality serving as a major health indicator. Current approaches for evaluating sleep quality, namely polysomnography and questionnaires, are often time-consuming, costly, or invasive. Thus, there is a pressing need for a more convenie...
Uloženo v:
| Vydáno v: | IEEE access Ročník 11; s. 1 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Sleep habits are strongly related to health behaviors, with sleep quality serving as a major health indicator. Current approaches for evaluating sleep quality, namely polysomnography and questionnaires, are often time-consuming, costly, or invasive. Thus, there is a pressing need for a more convenient, nonintrusive, and cost-effective method. The applications of deep learning (DL) in sleep quality prediction represent a groundbreaking technique for addressing sleep-related disorders. In this aspect, the article offers the design of a Modified Bald Eagle Search Algorithm with Deep Learning-Driven Sleep Quality Prediction (MBES-DLSQP) for Healthcare Monitoring Systems. The MBES-DLSQP technique combines the strengths of a DL model with a hyperparameter tuning strategy to provide precise sleep quality predictions. At the primary stage, the MBES-DLSQP technique undergoes data pre-processing. Besides, the MBES-DLSQP technique uses a stacked sparse autoencoder (SSAE)-based prediction model, which can extract and encode high-dimensional sleep data. The MBES-DLSQP incorporates MBESA-based hyperparameter tuning which assures its optimal configurations to further boost the efficiency of the SSAE model. The experimental outcome of the MBES-DLSQP algorithm is tested on the sleep dataset from the Kaggle repository. The experimental value infers that the MBES-DLSQP technique shows promising performance in sleep quality prediction with a maximum accuracy of 98.33%. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2023.3337647 |