Synthetic Data Generation and Evaluation Techniques for Classifiers in Data Starved Medical Applications

With their ability to find solutions among complex relationships of variables, machine learning (ML) techniques are becoming more applicable to various fields, including health risk prediction. However, prediction models are sensitive to the size and distribution of the data they are trained on. ML...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 13; S. 16584 - 16602
Hauptverfasser: Bae, Wan D., Alkobaisi, Shayma, Horak, Matthew, Bankar, Siddheshwari, Bhuvaji, Sartaj, Kim, Sungroul, Park, Choon-Sik
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!