Optimizing Document Classification: Unleashing the Power of Genetic Algorithms

Many individuals, including researchers, professors, and students, encounter difficulties when searching for scholarly documents, papers, and journals within a specific domain. Consequently, scholars have begun to focus on document classification problem, offering various methods to address this iss...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 11; pp. 83136 - 83149
Main Authors: Mustafa, Ghulam, Rauf, Abid, Al-Shamayleh, Ahmad Sami, Sulaiman, Muhammad, Alrawagfeh, Wagdi, Afzal, Muhammad Tanvir, Akhunzada, Adnan
Format: Journal Article
Language:English
Published: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many individuals, including researchers, professors, and students, encounter difficulties when searching for scholarly documents, papers, and journals within a specific domain. Consequently, scholars have begun to focus on document classification problem, offering various methods to address this issue. Researchers have utilized diverse data sources, such as citations, metadata, content, and hybrids, in their approaches.In these sources, the meta-data-based approach stands out for research paper classification due to its availability at no cost. Various scholars have employed different metadata parameters of research articles, including the title, abstract, keywords, and general terms, for research paper classification. In this study, we chose four meta-data-based features such as, title, keyword, abstract, and general terms from the SANTOS dataset, which was prepared by ACM. To represent these features numerically, we employed a semantic-based model called BERT instead of the commonly used count-based models. BERT generates a 768-dimensional vector for each record, which introduces significant time complexity during computation. Additionally, our proposed model optimizes the features using a genetic algorithm. Optimal feature selection performances a crucial role in this domain, enhancing the overall accuracy of the document classification system while reducing the time complexity associated with selecting the most relevant features from this large-dimensional space. For classification purposes, we employed GNB and SVM classifiers. The outcomes of our study exposed that the combination of title and keywords outperformed other combinations.
AbstractList Many individuals, including researchers, professors, and students, encounter difficulties when searching for scholarly documents, papers, and journals within a specific domain. Consequently, scholars have begun to focus on document classification problem, offering various methods to address this issue. Researchers have utilized diverse data sources, such as citations, metadata, content, and hybrids, in their approaches.In these sources, the meta-data-based approach stands out for research paper classification due to its availability at no cost. Various scholars have employed different metadata parameters of research articles, including the title, abstract, keywords, and general terms, for research paper classification. In this study, we chose four meta-data-based features such as, title, keyword, abstract, and general terms from the SANTOS dataset, which was prepared by ACM. To represent these features numerically, we employed a semantic-based model called BERT instead of the commonly used count-based models. BERT generates a 768-dimensional vector for each record, which introduces significant time complexity during computation. Additionally, our proposed model optimizes the features using a genetic algorithm. Optimal feature selection performances a crucial role in this domain, enhancing the overall accuracy of the document classification system while reducing the time complexity associated with selecting the most relevant features from this large-dimensional space. For classification purposes, we employed GNB and SVM classifiers. The outcomes of our study exposed that the combination of title and keywords outperformed other combinations.
Author Rauf, Abid
Afzal, Muhammad Tanvir
Sulaiman, Muhammad
Al-Shamayleh, Ahmad Sami
Akhunzada, Adnan
Mustafa, Ghulam
Alrawagfeh, Wagdi
Author_xml – sequence: 1
  givenname: Ghulam
  orcidid: 0000-0002-0354-8229
  surname: Mustafa
  fullname: Mustafa, Ghulam
  organization: Department of Computing, Shifa Tameer-e-Millat University, Islamabad, Pakistan
– sequence: 2
  givenname: Abid
  surname: Rauf
  fullname: Rauf, Abid
  organization: Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan
– sequence: 3
  givenname: Ahmad Sami
  orcidid: 0000-0002-7222-2433
  surname: Al-Shamayleh
  fullname: Al-Shamayleh, Ahmad Sami
  organization: Department of Network and Cybersecurity, Faculty of Information Technology, Ah-Ahliyya Amman University, Amman, Jordan
– sequence: 4
  givenname: Muhammad
  surname: Sulaiman
  fullname: Sulaiman, Muhammad
  organization: Department of Computer Science, University of Stavenger, Stavenger, Norway
– sequence: 5
  givenname: Wagdi
  orcidid: 0000-0003-4227-9276
  surname: Alrawagfeh
  fullname: Alrawagfeh, Wagdi
  email: wagdi.alrawagfeh@udst.edu.qa
  organization: College of Computing and IT, University of Doha for Science and Technology, Doha, Qatar
– sequence: 6
  givenname: Muhammad Tanvir
  surname: Afzal
  fullname: Afzal, Muhammad Tanvir
  organization: Department of Computing, Shifa Tameer-e-Millat University, Islamabad, Pakistan
– sequence: 7
  givenname: Adnan
  orcidid: 0000-0001-8370-9290
  surname: Akhunzada
  fullname: Akhunzada, Adnan
  organization: College of Computing and IT, University of Doha for Science and Technology, Doha, Qatar
BookMark eNp9kU9r3DAQxUVJoGmST9AeDD3vVv8t9ba4aRoITSDJWYzt8a4Wr7WVtJT201cbpxB6qC4jhvd7POa9IydTmJCQ94wuGaP206pprh4elpxysRTcci7NG3LGmbYLoYQ-efV_Sy5T2tLyTFmp-ox8v9tnv_O__bSuvoTusMMpV80IKfnBd5B9mD5XT9OIkDZHTd5gdR9-YqzCUF3jhNl31Wpch-jzZpcuyOkAY8LLl3lOnr5ePTbfFrd31zfN6nbRSWrzwmpVM9MZkL0ZKGUUB9YKbKEfFPRGKLAKh1qLVjKNUqNmUDOpCwSIphbn5Gb27QNs3T76HcRfLoB3z4sQ1w5iiTaiA9rrznKFopbSSAWKQkuF6MGg4m1fvD7OXvsYfhwwZbcNhziV-I4bacuNNZVFZWdVF0NKEQfX-fx8nxzBj45Rd2zDzW24YxvupY3Cin_Yv4n_T32YKY-IrwhWc2ap-APuFJdq
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s41060_024_00702_x
crossref_primary_10_1109_ACCESS_2023_3309416
crossref_primary_10_1016_j_heliyon_2024_e30318
crossref_primary_10_1109_ACCESS_2023_3336950
crossref_primary_10_1007_s12065_025_01046_6
crossref_primary_10_1007_s42044_025_00240_0
crossref_primary_10_1007_s41060_024_00545_6
crossref_primary_10_3390_rs16193603
crossref_primary_10_1371_journal_pone_0326417
Cites_doi 10.1177/004912417700600206
10.4038/jnsfsr.v44i2.7996
10.1145/3178876.3186005
10.1109/TKDE.2016.2522427
10.1155/2019/2121850
10.3115/v1/D14-1162
10.1109/EEBDA53927.2022.9744824
10.1109/BDICN58493.2023.00046
10.1109/ACCESS.2023.3247948
10.1145/3077136.3080834
10.1109/ANNES.1995.499481
10.1007/11925231_98
10.1016/j.neucom.2020.04.084
10.1145/2077489.2077531
10.1609/aaai.v29i1.9513
10.1109/CCECE.2007.203
10.1145/2684822.2697032
10.18653/v1/N16-1062
10.1109/ACCESS.2023.3290917
10.1007/s10462-018-09677-1
10.2307/3151755
10.1016/j.ins.2018.09.001
10.15388/Informatica.2010.300
10.1007/s11192-020-03769-y
10.7152/acro.v11i1.12774
10.1038/s41598-021-01460-7
10.1016/j.aej.2021.02.009
10.1162/tacl_a_00051
10.1007/978-3-030-30493-5_39
10.1007/s10462-004-0751-8
10.1007/s00799-015-0156-0
10.1016/j.patrec.2021.06.011
10.1109/ICMLA.2017.0-134
10.1176/appi.ajp.2009.09040458
10.14569/IJACSA.2020.0110748
10.1145/2023568.2023579
10.1007/978-3-540-24775-3_5
10.1109/ICDAR.2019.00224
10.1109/ICCSCE.2012.6487176
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3292248
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 83149
ExternalDocumentID oai_doaj_org_article_a0d6c925e3744845a50ab033da8e52bd
10_1109_ACCESS_2023_3292248
10172190
Genre orig-research
GrantInformation_xml – fundername: Qatar National Library for their generous support in providing Open Access funding for this research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-965718c8a4d8f0010ef1b3ebadf5ad835a95ef763b416e46e61a7146718aee873
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001047175100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:29:57 EDT 2025
Sun Jun 29 15:23:03 EDT 2025
Tue Nov 18 22:35:00 EST 2025
Sat Nov 29 04:02:48 EST 2025
Wed Aug 27 02:29:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-965718c8a4d8f0010ef1b3ebadf5ad835a95ef763b416e46e61a7146718aee873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8370-9290
0000-0002-0354-8229
0000-0002-7222-2433
0000-0003-4227-9276
OpenAccessLink https://doaj.org/article/a0d6c925e3744845a50ab033da8e52bd
PQID 2849110604
PQPubID 4845423
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3292248
ieee_primary_10172190
doaj_primary_oai_doaj_org_article_a0d6c925e3744845a50ab033da8e52bd
crossref_primary_10_1109_ACCESS_2023_3292248
proquest_journals_2849110604
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
ref10
ref16
ref19
ref18
le (ref4) 2015
xiao (ref49) 2018; 1
sajid (ref24) 2021; 20
ref50
ref46
ref45
ref48
faiz (ref17) 2021
ref42
ref41
ref44
ref43
rodrigues (ref12) 2009
ref8
ref3
ref6
ref5
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
zhou (ref34) 2016
conneau (ref40) 2016
flynn (ref7) 2014
mikolov (ref47) 2013
ref23
ref26
ref25
ref20
manoj (ref9) 2023
ref22
ref21
ref28
zhou (ref38) 2015
ref27
ref29
References_xml – ident: ref37
  doi: 10.1177/004912417700600206
– volume: 20
  year: 2021
  ident: ref24
  article-title: Exploiting papers' reference's Section for multi-label computer science research papers' classification
  publication-title: J Inf Knowl Manage
– ident: ref8
  doi: 10.4038/jnsfsr.v44i2.7996
– ident: ref42
  doi: 10.1145/3178876.3186005
– ident: ref3
  doi: 10.1109/TKDE.2016.2522427
– year: 2021
  ident: ref17
  article-title: Feature selection for document classification
– year: 2014
  ident: ref7
  article-title: Document classification in support of automated metadata extraction form heterogeneous collections
– ident: ref50
  doi: 10.1155/2019/2121850
– ident: ref15
  doi: 10.3115/v1/D14-1162
– ident: ref30
  doi: 10.1109/EEBDA53927.2022.9744824
– ident: ref29
  doi: 10.1109/BDICN58493.2023.00046
– ident: ref25
  doi: 10.1109/ACCESS.2023.3247948
– year: 2015
  ident: ref38
  article-title: A C-LSTM neural network for text classification
  publication-title: arXiv 1511 08630
– ident: ref39
  doi: 10.1145/3077136.3080834
– year: 2016
  ident: ref34
  article-title: Automated identification of computer science research papers
– ident: ref32
  doi: 10.1109/ANNES.1995.499481
– ident: ref2
  doi: 10.1007/11925231_98
– ident: ref14
  doi: 10.1016/j.neucom.2020.04.084
– start-page: 1
  year: 2023
  ident: ref9
  article-title: A Bayesian approach to classify conference papers
  publication-title: Proc 8th Int Conf Sci Technol Eng Math (ICONSTEM
– ident: ref23
  doi: 10.1145/2077489.2077531
– ident: ref36
  doi: 10.1609/aaai.v29i1.9513
– ident: ref6
  doi: 10.1109/CCECE.2007.203
– ident: ref26
  doi: 10.1145/2684822.2697032
– ident: ref43
  doi: 10.18653/v1/N16-1062
– ident: ref10
  doi: 10.1109/ACCESS.2023.3290917
– ident: ref33
  doi: 10.1007/s10462-018-09677-1
– ident: ref45
  doi: 10.2307/3151755
– ident: ref20
  doi: 10.1016/j.ins.2018.09.001
– year: 2009
  ident: ref12
  article-title: Multi-label hierarchical text classification using the ACM taxonomy
  publication-title: Text Mining Appl (TeMA) Track EPIA
– ident: ref31
  doi: 10.15388/Informatica.2010.300
– ident: ref18
  doi: 10.1007/s11192-020-03769-y
– ident: ref21
  doi: 10.7152/acro.v11i1.12774
– ident: ref11
  doi: 10.1038/s41598-021-01460-7
– year: 2016
  ident: ref40
  article-title: Very deep convolutional networks for text classification
  publication-title: arXiv 1606 01781
– ident: ref35
  doi: 10.1016/j.aej.2021.02.009
– start-page: 169
  year: 2015
  ident: ref4
  article-title: A comprehensive filter feature selection for improving document classification
  publication-title: Proc 29th Pacific Asia Conf Lang Inf Comput
– year: 2013
  ident: ref47
  article-title: Efficient estimation of word representations in vector space
  publication-title: arXiv 1301 3781 [cs]
– ident: ref16
  doi: 10.1162/tacl_a_00051
– ident: ref28
  doi: 10.1007/978-3-030-30493-5_39
– ident: ref44
  doi: 10.1007/s10462-004-0751-8
– ident: ref1
  doi: 10.1007/s00799-015-0156-0
– ident: ref48
  doi: 10.1016/j.patrec.2021.06.011
– ident: ref41
  doi: 10.1109/ICMLA.2017.0-134
– ident: ref46
  doi: 10.1176/appi.ajp.2009.09040458
– volume: 1
  start-page: 71
  year: 2018
  ident: ref49
  article-title: Research on patent text classification based on Word2 Vec and LSTM
  publication-title: Proc 11th Int Symp Comput Intell Design (ISCID)
– ident: ref19
  doi: 10.14569/IJACSA.2020.0110748
– ident: ref22
  doi: 10.1145/2023568.2023579
– ident: ref13
  doi: 10.1007/978-3-540-24775-3_5
– ident: ref27
  doi: 10.1109/ICDAR.2019.00224
– ident: ref5
  doi: 10.1109/ICCSCE.2012.6487176
SSID ssj0000816957
Score 2.3391795
Snippet Many individuals, including researchers, professors, and students, encounter difficulties when searching for scholarly documents, papers, and journals within a...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 83136
SubjectTerms association for computing machinery (ACM)
bag of word (BOW)
Bit error rate
Classification
Classification algorithms
Complexity
Document classification (DC)
Documents
Feature extraction
Genetic algorithms
machine learning (ML)
Metadata
Optimization
Semantics
Support vector machines
term frequency (TF)
Word2Vector (W2V)
SummonAdditionalLinks – databaseName: IEL
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTtwwFLUK6gIWLaUgpoXKC5ZkSJw4trubDkVdVFMWULGzHPsGRppHNTN00a_vvY4ZgRBI7JLIdpyc5D78OIexY6AJw6IOmcpzl1UiQNbUkGeqFb4yHhOEqDz3-6cajfT1tblIm9XjXhgAiIvPoE-HcS4_zP0dDZWdFjFhMZihbyhVd5u11gMqpCBhpErMQkVuTgfDIT5EnwTC-6Uw6Kz0I-8TSfqTqsoTUxz9y_n7V_Zsh71LgSQfdMh_YG9gtsu2H9ALfmSjX2gPpuN_eMLPUhs8qmDS-qAIyVd-NZtAJ6jEMRbkF6SaxuctJz5qbJoPJjfzxXh1O13usavz75fDH1nST8g8Zm2rzNQSPY_Xrgq6peQP2qIpoXGhlS5g6OWMhBYNTINRGVQ11IVTZDkL7QC0KvfZ5mw-gwPGQWjimpNBaKhkCC4Yp4wXzpeN80b3mLh_r9YncnHSuJjYmGTkxnZgWALDJjB67GRd6U_HrfFy8W8E2LooEWPHC4iETf-ZdXmovRESSoWJZyWdzF2Tl2VwGqRoQo_tEXoP7tcB12OH9_jb9BcvLbpu9AVEL_TpmWqf2RZ1sRuTOWSbq8UdHLG3_u9qvFx8iR_of_HY4q8
  priority: 102
  providerName: IEEE
Title Optimizing Document Classification: Unleashing the Power of Genetic Algorithms
URI https://ieeexplore.ieee.org/document/10172190
https://www.proquest.com/docview/2849110604
https://doaj.org/article/a0d6c925e3744845a50ab033da8e52bd
Volume 11
WOSCitedRecordID wos001047175100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKEcKkpB3UKRDxwbcJw4trktKxAH2HIoiJvl2BNYaR_V7sKBQ397Z5yAFiGVSy-REjlxPDOeh-N8H2MHQB8M8ypmWgiflTJCVlcgMt3IUNqABUJinru50MOhub21VytUX7QnrIUHbgV35EWsgpUKCo2VRKm8Er4WRRG9ASXrSN5XaLtSTCUfbPLKKt3BDOXCHvUHAxzRIbGFHxbSYuQyr0JRQuzvKFbe-OUUbM422acuS-T99u0-sw8w3WIbK9iBX9jwJ072yegJTzhGigda5eOJ4pI2_yR5H_Pr6RhatiSOiR6_Iko0Pms4gU3jo3l_fDebj5b3k8U2uz47_TU4zzpyhCxgSbbMbKUwrATjy2gaquygyesCah8b5SPmVd4qaNB71JhyQVlBlXtNbjE3HsDoYoetTWdT-Mo4SENAcipKA6WK0UfrtQ3Sh6L2wZoek89ycqFDDicCi7FLFYSwrhWuI-G6Trg99uPlpt8tcMa_m5-QAl6aEup1uoC24DpbcO_ZQo9tk_pW-qMC14oe23vWp-um6MJhXEZHT9hB3_5H37vsI42nXZ3ZY2vL-QN8Z-vhcTlazPeTdeLx8s_pfvrH8C-lRudX
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLbQmDQ4wAZDFMbwgSPpHCdObG6lMA3RlR02tJvl2C-jUtdObbcDfz3vOV41hIa0WxLZjpMveT_84_sY-wA0YZhXIauFcFkpA2RNBSKrW-lL4zFBiMpzP0f1eKzPz81J2qwe98IAQFx8Bn06jHP5Ye6vaajsII8Ji8EM_bEqSym67VrrIRXSkDCqTtxCuTAHg-EQH6NPEuH9Qhp0V_ov_xNp-pOuyj_GOHqYw-cP7Ns2e5ZCST7osN9hj2D2gj29QzD4ko1_oEW4nPzGE_4ltcGjDiatEIqgfOJnsyl0kkoco0F-QrppfN5yYqTGpvlgejFfTFa_Lpe77Ozw6-nwKEsKCpnHvG2VmUqh7_HalUG3lP5BmzcFNC60ygUMvpxR0KKJaTAug7KCKnc12c5cOwBdF6_Yxmw-g9eMg9TENqeC1FCqEFwwrjZeOl80zhvdY_L2vVqf6MVJ5WJqY5ohjO3AsASGTWD02Md1pauOXeP_xT8TYOuiRI0dLyASNv1p1olQeSMVFDWmnqVySrhGFEVwGpRsQo_tEnp37tcB12N7t_jb9B8vLTpv9AZEMPTmnmrv2dbR6fHIjr6Nv79lT6i73QjNHttYLa7hHdv0N6vJcrEfP9Y_4Sfl9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Document+Classification%3A+Unleashing+the+Power+of+Genetic+Algorithms&rft.jtitle=IEEE+access&rft.au=Mustafa%2C+Ghulam&rft.au=Rauf%2C+Abid&rft.au=Al-Shamayleh%2C+Ahmad+Sami&rft.au=Sulaiman%2C+Muhammad&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=83136&rft.epage=83149&rft_id=info:doi/10.1109%2FACCESS.2023.3292248&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3292248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon