Optimizing Document Classification: Unleashing the Power of Genetic Algorithms
Many individuals, including researchers, professors, and students, encounter difficulties when searching for scholarly documents, papers, and journals within a specific domain. Consequently, scholars have begun to focus on document classification problem, offering various methods to address this iss...
Saved in:
| Published in: | IEEE access Vol. 11; pp. 83136 - 83149 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Many individuals, including researchers, professors, and students, encounter difficulties when searching for scholarly documents, papers, and journals within a specific domain. Consequently, scholars have begun to focus on document classification problem, offering various methods to address this issue. Researchers have utilized diverse data sources, such as citations, metadata, content, and hybrids, in their approaches.In these sources, the meta-data-based approach stands out for research paper classification due to its availability at no cost. Various scholars have employed different metadata parameters of research articles, including the title, abstract, keywords, and general terms, for research paper classification. In this study, we chose four meta-data-based features such as, title, keyword, abstract, and general terms from the SANTOS dataset, which was prepared by ACM. To represent these features numerically, we employed a semantic-based model called BERT instead of the commonly used count-based models. BERT generates a 768-dimensional vector for each record, which introduces significant time complexity during computation. Additionally, our proposed model optimizes the features using a genetic algorithm. Optimal feature selection performances a crucial role in this domain, enhancing the overall accuracy of the document classification system while reducing the time complexity associated with selecting the most relevant features from this large-dimensional space. For classification purposes, we employed GNB and SVM classifiers. The outcomes of our study exposed that the combination of title and keywords outperformed other combinations. |
|---|---|
| AbstractList | Many individuals, including researchers, professors, and students, encounter difficulties when searching for scholarly documents, papers, and journals within a specific domain. Consequently, scholars have begun to focus on document classification problem, offering various methods to address this issue. Researchers have utilized diverse data sources, such as citations, metadata, content, and hybrids, in their approaches.In these sources, the meta-data-based approach stands out for research paper classification due to its availability at no cost. Various scholars have employed different metadata parameters of research articles, including the title, abstract, keywords, and general terms, for research paper classification. In this study, we chose four meta-data-based features such as, title, keyword, abstract, and general terms from the SANTOS dataset, which was prepared by ACM. To represent these features numerically, we employed a semantic-based model called BERT instead of the commonly used count-based models. BERT generates a 768-dimensional vector for each record, which introduces significant time complexity during computation. Additionally, our proposed model optimizes the features using a genetic algorithm. Optimal feature selection performances a crucial role in this domain, enhancing the overall accuracy of the document classification system while reducing the time complexity associated with selecting the most relevant features from this large-dimensional space. For classification purposes, we employed GNB and SVM classifiers. The outcomes of our study exposed that the combination of title and keywords outperformed other combinations. |
| Author | Rauf, Abid Afzal, Muhammad Tanvir Sulaiman, Muhammad Al-Shamayleh, Ahmad Sami Akhunzada, Adnan Mustafa, Ghulam Alrawagfeh, Wagdi |
| Author_xml | – sequence: 1 givenname: Ghulam orcidid: 0000-0002-0354-8229 surname: Mustafa fullname: Mustafa, Ghulam organization: Department of Computing, Shifa Tameer-e-Millat University, Islamabad, Pakistan – sequence: 2 givenname: Abid surname: Rauf fullname: Rauf, Abid organization: Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan – sequence: 3 givenname: Ahmad Sami orcidid: 0000-0002-7222-2433 surname: Al-Shamayleh fullname: Al-Shamayleh, Ahmad Sami organization: Department of Network and Cybersecurity, Faculty of Information Technology, Ah-Ahliyya Amman University, Amman, Jordan – sequence: 4 givenname: Muhammad surname: Sulaiman fullname: Sulaiman, Muhammad organization: Department of Computer Science, University of Stavenger, Stavenger, Norway – sequence: 5 givenname: Wagdi orcidid: 0000-0003-4227-9276 surname: Alrawagfeh fullname: Alrawagfeh, Wagdi email: wagdi.alrawagfeh@udst.edu.qa organization: College of Computing and IT, University of Doha for Science and Technology, Doha, Qatar – sequence: 6 givenname: Muhammad Tanvir surname: Afzal fullname: Afzal, Muhammad Tanvir organization: Department of Computing, Shifa Tameer-e-Millat University, Islamabad, Pakistan – sequence: 7 givenname: Adnan orcidid: 0000-0001-8370-9290 surname: Akhunzada fullname: Akhunzada, Adnan organization: College of Computing and IT, University of Doha for Science and Technology, Doha, Qatar |
| BookMark | eNp9kU9r3DAQxUVJoGmST9AeDD3vVv8t9ba4aRoITSDJWYzt8a4Wr7WVtJT201cbpxB6qC4jhvd7POa9IydTmJCQ94wuGaP206pprh4elpxysRTcci7NG3LGmbYLoYQ-efV_Sy5T2tLyTFmp-ox8v9tnv_O__bSuvoTusMMpV80IKfnBd5B9mD5XT9OIkDZHTd5gdR9-YqzCUF3jhNl31Wpch-jzZpcuyOkAY8LLl3lOnr5ePTbfFrd31zfN6nbRSWrzwmpVM9MZkL0ZKGUUB9YKbKEfFPRGKLAKh1qLVjKNUqNmUDOpCwSIphbn5Gb27QNs3T76HcRfLoB3z4sQ1w5iiTaiA9rrznKFopbSSAWKQkuF6MGg4m1fvD7OXvsYfhwwZbcNhziV-I4bacuNNZVFZWdVF0NKEQfX-fx8nxzBj45Rd2zDzW24YxvupY3Cin_Yv4n_T32YKY-IrwhWc2ap-APuFJdq |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s41060_024_00702_x crossref_primary_10_1109_ACCESS_2023_3309416 crossref_primary_10_1016_j_heliyon_2024_e30318 crossref_primary_10_1109_ACCESS_2023_3336950 crossref_primary_10_1007_s12065_025_01046_6 crossref_primary_10_1007_s42044_025_00240_0 crossref_primary_10_1007_s41060_024_00545_6 crossref_primary_10_3390_rs16193603 crossref_primary_10_1371_journal_pone_0326417 |
| Cites_doi | 10.1177/004912417700600206 10.4038/jnsfsr.v44i2.7996 10.1145/3178876.3186005 10.1109/TKDE.2016.2522427 10.1155/2019/2121850 10.3115/v1/D14-1162 10.1109/EEBDA53927.2022.9744824 10.1109/BDICN58493.2023.00046 10.1109/ACCESS.2023.3247948 10.1145/3077136.3080834 10.1109/ANNES.1995.499481 10.1007/11925231_98 10.1016/j.neucom.2020.04.084 10.1145/2077489.2077531 10.1609/aaai.v29i1.9513 10.1109/CCECE.2007.203 10.1145/2684822.2697032 10.18653/v1/N16-1062 10.1109/ACCESS.2023.3290917 10.1007/s10462-018-09677-1 10.2307/3151755 10.1016/j.ins.2018.09.001 10.15388/Informatica.2010.300 10.1007/s11192-020-03769-y 10.7152/acro.v11i1.12774 10.1038/s41598-021-01460-7 10.1016/j.aej.2021.02.009 10.1162/tacl_a_00051 10.1007/978-3-030-30493-5_39 10.1007/s10462-004-0751-8 10.1007/s00799-015-0156-0 10.1016/j.patrec.2021.06.011 10.1109/ICMLA.2017.0-134 10.1176/appi.ajp.2009.09040458 10.14569/IJACSA.2020.0110748 10.1145/2023568.2023579 10.1007/978-3-540-24775-3_5 10.1109/ICDAR.2019.00224 10.1109/ICCSCE.2012.6487176 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3292248 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 83149 |
| ExternalDocumentID | oai_doaj_org_article_a0d6c925e3744845a50ab033da8e52bd 10_1109_ACCESS_2023_3292248 10172190 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Qatar National Library for their generous support in providing Open Access funding for this research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-965718c8a4d8f0010ef1b3ebadf5ad835a95ef763b416e46e61a7146718aee873 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001047175100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:29:57 EDT 2025 Sun Jun 29 15:23:03 EDT 2025 Tue Nov 18 22:35:00 EST 2025 Sat Nov 29 04:02:48 EST 2025 Wed Aug 27 02:29:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-965718c8a4d8f0010ef1b3ebadf5ad835a95ef763b416e46e61a7146718aee873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8370-9290 0000-0002-0354-8229 0000-0002-7222-2433 0000-0003-4227-9276 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10172190 |
| PQID | 2849110604 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2023_3292248 ieee_primary_10172190 doaj_primary_oai_doaj_org_article_a0d6c925e3744845a50ab033da8e52bd crossref_primary_10_1109_ACCESS_2023_3292248 proquest_journals_2849110604 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 ref11 ref10 ref16 ref19 ref18 le (ref4) 2015 xiao (ref49) 2018; 1 sajid (ref24) 2021; 20 ref50 ref46 ref45 ref48 faiz (ref17) 2021 ref42 ref41 ref44 ref43 rodrigues (ref12) 2009 ref8 ref3 ref6 ref5 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 zhou (ref34) 2016 conneau (ref40) 2016 flynn (ref7) 2014 mikolov (ref47) 2013 ref23 ref26 ref25 ref20 manoj (ref9) 2023 ref22 ref21 ref28 zhou (ref38) 2015 ref27 ref29 |
| References_xml | – ident: ref37 doi: 10.1177/004912417700600206 – volume: 20 year: 2021 ident: ref24 article-title: Exploiting papers' reference's Section for multi-label computer science research papers' classification publication-title: J Inf Knowl Manage – ident: ref8 doi: 10.4038/jnsfsr.v44i2.7996 – ident: ref42 doi: 10.1145/3178876.3186005 – ident: ref3 doi: 10.1109/TKDE.2016.2522427 – year: 2021 ident: ref17 article-title: Feature selection for document classification – year: 2014 ident: ref7 article-title: Document classification in support of automated metadata extraction form heterogeneous collections – ident: ref50 doi: 10.1155/2019/2121850 – ident: ref15 doi: 10.3115/v1/D14-1162 – ident: ref30 doi: 10.1109/EEBDA53927.2022.9744824 – ident: ref29 doi: 10.1109/BDICN58493.2023.00046 – ident: ref25 doi: 10.1109/ACCESS.2023.3247948 – year: 2015 ident: ref38 article-title: A C-LSTM neural network for text classification publication-title: arXiv 1511 08630 – ident: ref39 doi: 10.1145/3077136.3080834 – year: 2016 ident: ref34 article-title: Automated identification of computer science research papers – ident: ref32 doi: 10.1109/ANNES.1995.499481 – ident: ref2 doi: 10.1007/11925231_98 – ident: ref14 doi: 10.1016/j.neucom.2020.04.084 – start-page: 1 year: 2023 ident: ref9 article-title: A Bayesian approach to classify conference papers publication-title: Proc 8th Int Conf Sci Technol Eng Math (ICONSTEM – ident: ref23 doi: 10.1145/2077489.2077531 – ident: ref36 doi: 10.1609/aaai.v29i1.9513 – ident: ref6 doi: 10.1109/CCECE.2007.203 – ident: ref26 doi: 10.1145/2684822.2697032 – ident: ref43 doi: 10.18653/v1/N16-1062 – ident: ref10 doi: 10.1109/ACCESS.2023.3290917 – ident: ref33 doi: 10.1007/s10462-018-09677-1 – ident: ref45 doi: 10.2307/3151755 – ident: ref20 doi: 10.1016/j.ins.2018.09.001 – year: 2009 ident: ref12 article-title: Multi-label hierarchical text classification using the ACM taxonomy publication-title: Text Mining Appl (TeMA) Track EPIA – ident: ref31 doi: 10.15388/Informatica.2010.300 – ident: ref18 doi: 10.1007/s11192-020-03769-y – ident: ref21 doi: 10.7152/acro.v11i1.12774 – ident: ref11 doi: 10.1038/s41598-021-01460-7 – year: 2016 ident: ref40 article-title: Very deep convolutional networks for text classification publication-title: arXiv 1606 01781 – ident: ref35 doi: 10.1016/j.aej.2021.02.009 – start-page: 169 year: 2015 ident: ref4 article-title: A comprehensive filter feature selection for improving document classification publication-title: Proc 29th Pacific Asia Conf Lang Inf Comput – year: 2013 ident: ref47 article-title: Efficient estimation of word representations in vector space publication-title: arXiv 1301 3781 [cs] – ident: ref16 doi: 10.1162/tacl_a_00051 – ident: ref28 doi: 10.1007/978-3-030-30493-5_39 – ident: ref44 doi: 10.1007/s10462-004-0751-8 – ident: ref1 doi: 10.1007/s00799-015-0156-0 – ident: ref48 doi: 10.1016/j.patrec.2021.06.011 – ident: ref41 doi: 10.1109/ICMLA.2017.0-134 – ident: ref46 doi: 10.1176/appi.ajp.2009.09040458 – volume: 1 start-page: 71 year: 2018 ident: ref49 article-title: Research on patent text classification based on Word2 Vec and LSTM publication-title: Proc 11th Int Symp Comput Intell Design (ISCID) – ident: ref19 doi: 10.14569/IJACSA.2020.0110748 – ident: ref22 doi: 10.1145/2023568.2023579 – ident: ref13 doi: 10.1007/978-3-540-24775-3_5 – ident: ref27 doi: 10.1109/ICDAR.2019.00224 – ident: ref5 doi: 10.1109/ICCSCE.2012.6487176 |
| SSID | ssj0000816957 |
| Score | 2.3391795 |
| Snippet | Many individuals, including researchers, professors, and students, encounter difficulties when searching for scholarly documents, papers, and journals within a... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 83136 |
| SubjectTerms | association for computing machinery (ACM) bag of word (BOW) Bit error rate Classification Classification algorithms Complexity Document classification (DC) Documents Feature extraction Genetic algorithms machine learning (ML) Metadata Optimization Semantics Support vector machines term frequency (TF) Word2Vector (W2V) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx4YSRvHcWKzlYqKARUGkNgsvwKVSovawsCv584JqAgJFsZEiR2fz3f3Wc73EXKaS2NYUYXEW-GTPHcssaXniWcodGu9VT6SuF6Xw6F8eFC3S1JfeCaspgeuDdc1qS-cykTgJSCJXBiRGpty7o0MIrMeo29aqiUwFWOwZIUSZUMzxFLV7fX7MKIOqoV3eKYgc8lvqSgy9jcSKz_ickw2g02y0VSJtFd_3RZZCZNtsr7EHbhDhjew2J9H73BBIVO84i4fjRKXePgn2vuc3k_GoVZLolDo0VuURKPTiiLZNDRNe-PH6Wy0eHqe75L7weVd_yppxBESB5BskahCQFpx0uReVojsQsUsD9b4ShgPdZVRIlQQPSyUXCEvQsFMiWGRSROCLPkeaU2mk7BPaOYzHhz-W567nKfQHsuMBWjDC-mKzLdJ9mkn7RrmcBSwGOuIIFKla-NqNK5ujNsmZ18vvdTEGb8_foET8PUosl7HG-ALuvEF_ZcvtMkuTt9SfwhwVdomR5_zqZslOteQlyHQI3fQwX_0fUjWcDz17swRaS1mr-GYrLq3xWg-O4ne-QGr5-VK priority: 102 providerName: Directory of Open Access Journals |
| Title | Optimizing Document Classification: Unleashing the Power of Genetic Algorithms |
| URI | https://ieeexplore.ieee.org/document/10172190 https://www.proquest.com/docview/2849110604 https://doaj.org/article/a0d6c925e3744845a50ab033da8e52bd |
| Volume | 11 |
| WOSCitedRecordID | wos001047175100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : directory of open access journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLbGtAMcYIMhOsbkw46ki-M4sbmVsonDVnZg0m6Wf7xApa5FbcdhB_523nO8aggxiUuURLbj5Ev83nP8vo-x41o7J5oOiuhVLOo6iMK3URZRkNCtj97EROJ63k4m-vraXOZk9ZQLAwBp8RkMaTf9y4-LcEtTZSciBSwGI_Qnbdv0yVqbCRVSkDCqzcxCojQno_EYb2JIAuFDWRk0VvoP65NI-rOqyl9DcbIvZy_-s2e77Hl2JPmoR36PbcH8JXv2gF7wFZt8wfHgZnqHB_xTboMnFUxaH5Qg-cCv5jPoBZU4-oL8klTT-KLjxEeNTfPR7NtiOV1_v1nts6uz06_jz0XWTygCRm3rwjQKLU_Qro66o-APOuEleBc75SK6Xs4o6HCA8eiVQd1AI1xLI6fQDkC38jXbni_m8IbxKlYSAqWf16GWJbYnKucx-pGNDk0VB6y6f642ZHJx0riY2RRklMb2YFgCw2YwBuz9ptKPnlvj8eIfCbBNUSLGTicQCZu_M-vK2ARTKZAtBp61cqp0vpQyOg2q8tjRfULvwfV64Abs8B5_m7_ilUXTjbaA6IUO_lHtLXtKXeznZA7Z9np5C-_YTvi5nq6WRynAx-3Fr9Oj9LL-BoyI5Po |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLfQQAIO42vTOgb4wJF08VdicyuFaYhSdtik3Sx_vEClrkVtx4G_nmfHq4YQSNySyHac_GK_9xy_34-Q11I7x5oOquhVrKQMrPJtFFVkSejWR29iJnGdtNOpvrw0ZyVZPefCAEDefAbDdJj_5cdluE5LZccsBywGI_S7Skpe9-la2yWVpCFhVFu4hVhtjkfjMT7GMEmEDwU3aK70b_Yn0_QXXZU_JuNsYU4e_WffHpPd4krSUY_9E3IHFk_Jw1sEg8_I9AvOCFezn3hC35c2aNbBTDuEMihv6cViDr2kEkVvkJ4l3TS67GhipMam6Wj-dbmabb5drffIxcmH8_FpVRQUqoBx26YyjULbE7STUXcp_IOOeQHexU65iM6XMwo6nGI8-mUgG2iYa9PcybQD0K3YJzuL5QIOCOWRCwgpAV0GKWpsj3HnMf4RjQ4NjwPCb96rDYVePKlczG0OM2pjezBsAsMWMAbkzbbS955d49_F3yXAtkUTNXa-gEjYMtKsq2MTDFcgWgw9pXKqdr4WIjoNinvs6F5C79b9euAG5OgGf1vG8dqi8UZrkAiGDv9S7RW5f3r-eWInH6efnpMHqbv9Cs0R2dmsruEFuRd-bGbr1cv8sf4C0PnmGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Document+Classification%3A+Unleashing+the+Power+of+Genetic+Algorithms&rft.jtitle=IEEE+access&rft.au=Mustafa%2C+Ghulam&rft.au=Rauf%2C+Abid&rft.au=Al-Shamayleh%2C+Ahmad+Sami&rft.au=Sulaiman%2C+Muhammad&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=83136&rft.epage=83149&rft_id=info:doi/10.1109%2FACCESS.2023.3292248&rft.externalDocID=10172190 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |