Guidance Design for Escape Flight Vehicle Using Evolution Strategy Enhanced Deep Reinforcement Learning

Guidance commands of flight vehicles can be regarded as a series of data sets having fixed time intervals, thus guidance design constitutes a typical sequential decision problem and satisfies the basic conditions for using the deep reinforcement learning (DRL) technique. In this paper, we consider t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 12; S. 48210 - 48222
Hauptverfasser: Hu, Xiao, Wang, Tianshu, Gong, Min, Yang, Shaoshi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Guidance commands of flight vehicles can be regarded as a series of data sets having fixed time intervals, thus guidance design constitutes a typical sequential decision problem and satisfies the basic conditions for using the deep reinforcement learning (DRL) technique. In this paper, we consider the scenario where the escape flight vehicle (EFV) generates guidance commands based on the DRL technique and the pursuit flight vehicle (PFV) generates guidance commands based on the proportional navigation method. Evasion distance is described as the minimum distance between the EFV and the PFV during the escape-and-pursuit process. For the EFV, the objective of the guidance design entails progressively maximizing the residual velocity, which is described as the EFV's velocity when the evasion distance occurs, subject to the constraint imposed by the given evasion distance. Thus an irregular dynamic max-min problem of extremely large-scale is formulated. In this problem, the time instant when the optimal solution (i.e., the maximum residual velocity satisfying the evasion distance constraint) can be attained is uncertain and the optimum solution is dependent on all the intermediate guidance commands generated before. For solving this challenging problem, a two-step strategy is conceived. In the first step, we use the proximal policy optimization (PPO) algorithm to generate the guidance commands of the EFV. The results obtained by PPO in the global search space are coarse, despite the fact that the reward function, the neural network parameters and the learning rate are designed elaborately. Therefore, in the second step, we propose to invoke the evolution strategy (ES) based algorithm, which uses the result of PPO as the initial value, to further improve the quality of the solution by searching in the local space. Extensive simulation results demonstrate that the proposed guidance design method based on the PPO algorithm is capable of achieving a residual velocity of 67.24 m/s, higher than the residual velocities achieved by the benchmark soft actor-critic and deep deterministic policy gradient algorithms. Furthermore, the proposed ES-enhanced PPO algorithm outperforms the PPO algorithm by 2.7%, achieving a residual velocity of 69.04 m/s.
AbstractList Guidance commands of flight vehicles can be regarded as a series of data sets having fixed time intervals, thus guidance design constitutes a typical sequential decision problem and satisfies the basic conditions for using the deep reinforcement learning (DRL) technique. In this paper, we consider the scenario where the escape flight vehicle (EFV) generates guidance commands based on the DRL technique and the pursuit flight vehicle (PFV) generates guidance commands based on the proportional navigation method. Evasion distance is described as the minimum distance between the EFV and the PFV during the escape-and-pursuit process. For the EFV, the objective of the guidance design entails progressively maximizing the residual velocity, which is described as the EFV’s velocity when the evasion distance occurs, subject to the constraint imposed by the given evasion distance. Thus an irregular dynamic max-min problem of extremely large-scale is formulated. In this problem, the time instant when the optimal solution (i.e., the maximum residual velocity satisfying the evasion distance constraint) can be attained is uncertain and the optimum solution is dependent on all the intermediate guidance commands generated before. For solving this challenging problem, a two-step strategy is conceived. In the first step, we use the proximal policy optimization (PPO) algorithm to generate the guidance commands of the EFV. The results obtained by PPO in the global search space are coarse, despite the fact that the reward function, the neural network parameters and the learning rate are designed elaborately. Therefore, in the second step, we propose to invoke the evolution strategy (ES) based algorithm, which uses the result of PPO as the initial value, to further improve the quality of the solution by searching in the local space. Extensive simulation results demonstrate that the proposed guidance design method based on the PPO algorithm is capable of achieving a residual velocity of 67.24 m/s, higher than the residual velocities achieved by the benchmark soft actor-critic and deep deterministic policy gradient algorithms. Furthermore, the proposed ES-enhanced PPO algorithm outperforms the PPO algorithm by 2.7%, achieving a residual velocity of 69.04 m/s.
Author Yang, Shaoshi
Wang, Tianshu
Gong, Min
Hu, Xiao
Author_xml – sequence: 1
  givenname: Xiao
  surname: Hu
  fullname: Hu, Xiao
  organization: School of Aerospace Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Tianshu
  surname: Wang
  fullname: Wang, Tianshu
  organization: School of Aerospace Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Min
  orcidid: 0009-0007-3011-7858
  surname: Gong
  fullname: Gong, Min
  organization: China Academy of Launch Vehicle Technology, Beijing, China
– sequence: 4
  givenname: Shaoshi
  orcidid: 0000-0003-2395-1637
  surname: Yang
  fullname: Yang, Shaoshi
  email: shaoshi.yang@bupt.edu.cn
  organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
BookMark eNqFkU1rGzEQhkVJoWmaX5AeBD3b1dd-6BjczQcYCnWaq9BqR2uZjeRKciH_vtpsKKGXzkXDMO8zo3k_ojMfPCB0RcmaUiK_Xm823W63ZoSJNect54y9Q-eM1nLFK16fvck_oMuUDqREW0pVc47G25MbtDeAv0Fyo8c2RNwlo4-AbyY37jN-hL0zE-CfyfkRd7_DdMoueLzLUWcYn3Hn9zNhKAg44h_gfIEYeAKf8RZ09EX3Cb23ekpw-fpeoIeb7mFzt9p-v73fXG9XRhCZV23fkh6M7GFoCaFmELyCVjZ2YFoYEDW1pm30AJWRQCSXFmppiSXGmt5afoHuF-wQ9EEdo3vS8VkF7dRLIcRR6Zjn76hGNIJxQ3pb0KyxsjJga02JIZW0DS2sLwvrGMOvE6SsDuEUfdleccJ5TSWr5i6-dJkYUopg_06lRM3-qMUfNfujXv0pKvmPyris57OWo7rpP9rPi9YBwJtpoq0EJfwPmKyhLw
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_JMASS_2024_3420893
crossref_primary_10_1016_j_cja_2024_103368
Cites_doi 10.1016/j.ast.2021.106776
10.1109/TNNLS.2020.3029475
10.1109/ACCESS.2020.3022600
10.1023/A:1015059928466
10.1016/j.cam.2006.04.037
10.1109/TAES.2020.3015321
10.1038/nature24270
10.1109/TAC.2018.2828088
10.1016/j.ast.2018.10.013
10.13140/RG.2.2.18893.74727
10.1016/j.ast.2020.105746
10.48550/arXiv.1812.05905
10.1016/j.cja.2019.12.009
10.1109/ACCESS.2019.2909579
10.1109/CGNCC.2016.7828936
10.2514/1.50923
10.5430/air.v4n1p60
10.1109/TCOMM.2022.3170458
10.1109/TWC.2020.3016024
10.1038/s41586-019-1724-z
10.1016/j.ast.2022.107651
10.1109/TAES.2022.3178770
10.1109/ICUS50048.2020.9274975
10.1016/j.ast.2018.09.004
10.2514/1.G004446
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3383322
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 48222
ExternalDocumentID oai_doaj_org_article_747423c0bf2a427f95cef6a10c059f71
10_1109_ACCESS_2024_3383322
10485410
Genre orig-research
GrantInformation_xml – fundername: Beijing Municipal Natural Science Foundation
  grantid: Z220004; L202012
  funderid: 10.13039/501100004826
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2023ZCJH02
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-8b80bec9bed8001cd435e897fd2a4ce461fc87ade5c9e0939fe69f0f0cfcbff3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197766100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Tue Oct 14 18:52:18 EDT 2025
Sun Jun 29 16:39:19 EDT 2025
Tue Nov 18 22:38:28 EST 2025
Sat Nov 29 06:25:35 EST 2025
Wed Aug 27 02:17:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-8b80bec9bed8001cd435e897fd2a4ce461fc87ade5c9e0939fe69f0f0cfcbff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-3011-7858
0000-0003-2395-1637
OpenAccessLink https://ieeexplore.ieee.org/document/10485410
PQID 3033619251
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_primary_10_1109_ACCESS_2024_3383322
crossref_citationtrail_10_1109_ACCESS_2024_3383322
proquest_journals_3033619251
doaj_primary_oai_doaj_org_article_747423c0bf2a427f95cef6a10c059f71
ieee_primary_10485410
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref37
Huang (ref4) 2006; 24
ref31
ref30
ref11
ref10
ref32
Goodfellow (ref13) 2016
ref17
Schulman (ref15) 2015
ref19
ref18
Qian (ref33) 2014
Liu (ref2) 2010; 31
Wang (ref16) 2019
ref24
ref23
ref26
ref25
ref20
ref21
Lillicrap (ref36) 2015
ref28
Zhang (ref22) 2020; 42
ref27
ref29
Chen (ref1) 2009; 30
ref8
Fu (ref35) 2019
ref7
ref9
Schulman (ref34) 2017
ref3
ref6
ref5
Sutton (ref14) 2019
References_xml – ident: ref8
  doi: 10.1016/j.ast.2021.106776
– ident: ref21
  doi: 10.1109/TNNLS.2020.3029475
– year: 2015
  ident: ref36
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv:1509.02971
– ident: ref26
  doi: 10.1109/ACCESS.2020.3022600
– ident: ref17
  doi: 10.1023/A:1015059928466
– year: 2015
  ident: ref15
  article-title: Trust region policy optimization
  publication-title: arXiv:1502.05477
– ident: ref3
  doi: 10.1016/j.cam.2006.04.037
– ident: ref29
  doi: 10.1109/TAES.2020.3015321
– ident: ref19
  doi: 10.1038/nature24270
– year: 2017
  ident: ref34
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv:1707.06347
– year: 2019
  ident: ref14
  publication-title: Reinforcement Learning
– ident: ref5
  doi: 10.1109/TAC.2018.2828088
– ident: ref9
  doi: 10.1016/j.ast.2018.10.013
– ident: ref18
  doi: 10.13140/RG.2.2.18893.74727
– ident: ref25
  doi: 10.1016/j.ast.2020.105746
– ident: ref37
  doi: 10.48550/arXiv.1812.05905
– ident: ref6
  doi: 10.1016/j.cja.2019.12.009
– ident: ref23
  doi: 10.1109/ACCESS.2019.2909579
– ident: ref11
  doi: 10.1109/CGNCC.2016.7828936
– ident: ref12
  doi: 10.2514/1.50923
– volume: 42
  start-page: 414
  issue: 2
  year: 2020
  ident: ref22
  article-title: Q-learning reinforcement learning guidance law
  publication-title: Syst. Eng. Electron.
– ident: ref24
  doi: 10.5430/air.v4n1p60
– year: 2019
  ident: ref35
  article-title: Guidance design for the interception of hypersonic boost glide vehicles
– ident: ref31
  doi: 10.1109/TCOMM.2022.3170458
– volume: 24
  start-page: 11
  issue: 6
  year: 2006
  ident: ref4
  article-title: A linear quadratic optimal guidance method for lunar soft landing
  publication-title: Aerosp. Control
– ident: ref32
  doi: 10.1109/TWC.2020.3016024
– volume: 30
  start-page: 1583
  issue: 9
  year: 2009
  ident: ref1
  article-title: Guidance based on zero effort miss for super-range exoatmospheric intercept
  publication-title: Acta Aeronautica et Astronautica Sinica
– year: 2019
  ident: ref16
  article-title: Truly proximal policy optimization
  publication-title: arXiv:1903.07940
– ident: ref20
  doi: 10.1038/s41586-019-1724-z
– ident: ref7
  doi: 10.1016/j.ast.2022.107651
– year: 2014
  ident: ref33
  publication-title: Missile Flight Aerodynamics
– ident: ref30
  doi: 10.1109/TAES.2022.3178770
– ident: ref27
  doi: 10.1109/ICUS50048.2020.9274975
– ident: ref28
  doi: 10.1016/j.ast.2018.09.004
– ident: ref10
  doi: 10.2514/1.G004446
– volume: 31
  start-page: 1768
  issue: 7
  year: 2010
  ident: ref2
  article-title: A zero-effort miss distance-based guidance law for endoatmoshperic interceptor
  publication-title: J. Astronaut.
– year: 2016
  ident: ref13
  publication-title: Deep Learning
SSID ssj0000816957
Score 2.3069117
Snippet Guidance commands of flight vehicles can be regarded as a series of data sets having fixed time intervals, thus guidance design constitutes a typical...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 48210
SubjectTerms Algorithms
Commands
Deep learning
Deep reinforcement learning
Differential games
Earth
Evolution
evolution strategy (ES)
Evolutionary computation
Flight
Flight vehicles
guidance design
Machine learning
max-min problem
Minimax techniques
Navigation
Neural networks
Optimization
Proportional navigation
proximal policy optimization (PPO)
Real-time systems
Vectors
Velocity
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrFaJQePrib7zrHWVg8iIlJ6C5tsRgWpYqvgv3cmm5YVQS9el2STzEwy32Rnv2HsGJ2GdWkNkYldFdGHN9xSFdmyVAXOvAJPuzi6Lm5uyvFY3bZKfVFOWEMP3AjuDOEuenwrDMRVGhegMusgr6SwCAzA_z0eI-ppBVP-DC5lrrIi0AxJoc56_T6uCAPCOD2lsCyJ42-uyDP2hxIrP85l72yGG2w9oETea2a3yZbcZIuttbgDt9nD5ftTTSrjFz4JgyP65IMp5TPx4TOF3HzkHqk792kBfPARrIwHRtpPPpg8-gQAfIV75XfOs6haf2HIA_Hqww67Hw7u-1dRqJoQWYzVZlFpSoGKUcbVCAalrREQuVIVUKMAUS-5BFsWVe0yq5xQiQKXKxAgLFgDkOyy5cnLxO1R1lNh8Cg3QgKkRQmmqqgfgjJbJybPOiyey0_bwChOhS2etY8shNKN0DUJXQehd9jJotNrQ6jxe_NzUsyiKbFh-wdoIzrYiP7LRjpsh9TaGi8ts1SKDuvO9azD1p1q9OkJRZWZ3P-PsQ_YKq2nubXpsuXZ27s7ZCv2Y_Y0fTvyVvsF00fvfg
  priority: 102
  providerName: Directory of Open Access Journals
Title Guidance Design for Escape Flight Vehicle Using Evolution Strategy Enhanced Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10485410
https://www.proquest.com/docview/3033619251
https://doaj.org/article/747423c0bf2a427f95cef6a10c059f71
Volume 12
WOSCitedRecordID wos001197766100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEA4qHvSwu75wVldy2KOt6dekc3THHj2oLCLiLXTSVSrIKM6MsJf97Val46CIgpemaVLdlf7yqEoqXwnxmyYND0WLicugSXjjjbpUw205NZo0bzDQLl6e6LOz6urK_I2H1cNZGAAIwWewx7dhL7-991NeKqMeXlRlwQeq5rXW3WGt2YIKZ5AwpY7MQqky-weDAVWCfMCs2GNPLM-yN7NPIOmPWVXeDcVhfhl-_6JmP8S3aEjKgw75FTEHo1Wx_IpecE1cH01vW0ZVHoY4DUkGqqzHHPIkh3fslctLuGFxGSIHZP0UG6KMpLX_ZD26CTEC9Ap4kOcQiFZ9WFOUkZv1el1cDOuLwXESEysknty5SVK5ShF2xkFL9mLqW7KZoDIa26wpCLp-ir7STQulN6BMbhD6BhUqj94h5htiYXQ_gk0OjNKORnunUsRCV-iahuXIbvNt7vplT2Qv_9v6SDrOuS_ubHA-lLEdSJZBshGkntidCT10nBufF__DQM6KMmF2eEAI2dj_LHlNZDh65ZCqmGkkBQH7Tao82Zeo055YZ1Rffa8DtCe2X9qFjb17bGnaz9nxLNOfH4htiSVWsVur2RYLk8cp_BKL_mlyO37cCY4_XU__1zuhET8DHAjvhw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQmAQ8wIBNFMbmBx7JsPOjjh9HaTe0UiFUTXuzYueumzR109pO2n-_O8erhhBIvEVRLrHz-ey78_k7IT7RohGgbDHzOTQZb7yRSjU8lrU11PIGI-3i6dhMJvXZmf2ZDqvHszAAEJPP4IAv415-exVWHCojDS_rquQDVU-rssx1d1xrHVLhGhK2MolbSCv75XAwoG6QF5iXB-yLFXn-2_oTafpTXZU_JuO4woxe_WfbtsTLZErKww771-IJzN-IF48IBt-K2dHqomVc5beYqSHJRJXDBSc9ydEl--XyFM5ZXMbcATm8TUNRJtraOzmcn8csAXoFXMtfEKlWQ4wqysTOOtsW09FwOjjOUmmFLJBDt8xqXytCz3poyWLUoSWrCWprsM2bksDrawy1aVqoggVlC4vQt6hQBQwesdgRG_OrObzj1Cjjab73SiOWpkbfNCxHlltoC9-veiJ_-N8uJNpxrn5x6aL7oazrQHIMkksg9cTntdB1x7rx78e_MpDrR5kyO94ghFzSQEd-E5mOQXmkLuYGqYGA_UarQBYmGt0T24zqo-91gPbE7sO4cEm_F44W_oJdz0q__4vYvnh2PP0xduPvk5MP4jk3t4vc7IqN5c0KPorNcLu8WNzsxUF8D2h38Kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+Design+for+Escape+Flight+Vehicle+Using+Evolution+Strategy+Enhanced+Deep+Reinforcement+Learning&rft.jtitle=IEEE+access&rft.au=Hu%2C+Xiao&rft.au=Wang%2C+Tianshu&rft.au=Gong%2C+Min&rft.au=Yang%2C+Shaoshi&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=48210&rft.epage=48222&rft_id=info:doi/10.1109%2FACCESS.2024.3383322&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3383322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon