Small Object Detection Algorithm Based on Improved YOLOv8 for Remote Sensing
Due to the limitations of small targets in remote sensing images such as background noise, poor information, and so on, the results of commonly used detection algorithms in small target detection is not satisfactory. To improve the accuracy of detection results, we develop an improved algorithm base...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing Jg. 17; S. 1 - 15 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Due to the limitations of small targets in remote sensing images such as background noise, poor information, and so on, the results of commonly used detection algorithms in small target detection is not satisfactory. To improve the accuracy of detection results, we develop an improved algorithm based on YOLOv8, called LAR-YOLOv8. First, in the feature extraction network, the local module is enhanced by using the dual-branch architecture attention mechanism, while the vision transformer block is used to maximize the representation of the feature map. Second, an attention-guided bi-directional feature pyramid network is designed to generate more discriminative information by efficiently extracting feature from the shallow network through a dynamic sparse attention mechanism, and adding top-down paths to guide the subsequent network modules for feature fusion. Finally, the RIOU loss function is proposed to avoid the failure of the loss function and improve the shape consistency between the predicted and ground truth box. Experimental results on NWPU VHR-10, RSOD and CARPK datasets verify that LAR-YOLOv8 achieves satisfactory results in terms of mAP (small), mAP, model parameters and FPS, and can prove that our modifications made to the original YOLOv8 model are effective. |
|---|---|
| AbstractList | Due to the limitations of small targets in remote sensing images, such as background noise, poor information, and so on, the results of commonly used detection algorithms in small target detection is not satisfactory. To improve the accuracy of detection results, we develop an improved algorithm based on YOLOv8, called LAR-YOLOv8. First, in the feature extraction network, the local module is enhanced by using the dual-branch architecture attention mechanism, while the vision transformer block is used to maximize the representation of the feature map. Second, an attention-guided bidirectional feature pyramid network is designed to generate more discriminative information by efficiently extracting feature from the shallow network through a dynamic sparse attention mechanism, and adding top–down paths to guide the subsequent network modules for feature fusion. Finally, the RIOU loss function is proposed to avoid the failure of the loss function and improve the shape consistency between the predicted and ground-truth box. Experimental results on NWPU VHR-10, RSOD, and CARPK datasets verify that LAR-YOLOv8 achieves satisfactory results in terms of mAP (small), mAP, model parameters, and FPS, and can prove that our modifications made to the original YOLOv8 model are effective. Due to the limitations of small targets in remote sensing images such as background noise, poor information, and so on, the results of commonly used detection algorithms in small target detection is not satisfactory. To improve the accuracy of detection results, we develop an improved algorithm based on YOLOv8, called LAR-YOLOv8. First, in the feature extraction network, the local module is enhanced by using the dual-branch architecture attention mechanism, while the vision transformer block is used to maximize the representation of the feature map. Second, an attention-guided bi-directional feature pyramid network is designed to generate more discriminative information by efficiently extracting feature from the shallow network through a dynamic sparse attention mechanism, and adding top-down paths to guide the subsequent network modules for feature fusion. Finally, the RIOU loss function is proposed to avoid the failure of the loss function and improve the shape consistency between the predicted and ground truth box. Experimental results on NWPU VHR-10, RSOD and CARPK datasets verify that LAR-YOLOv8 achieves satisfactory results in terms of mAP (small), mAP, model parameters and FPS, and can prove that our modifications made to the original YOLOv8 model are effective. |
| Author | Yi, Hao Liu, Bo Zhao, Bin Liu, Enhai |
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0009-0007-5808-0161 surname: Yi fullname: Yi, Hao organization: National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, China – sequence: 2 givenname: Bo orcidid: 0000-0003-3084-0126 surname: Liu fullname: Liu, Bo organization: National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, China – sequence: 3 givenname: Bin surname: Zhao fullname: Zhao, Bin organization: National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, China – sequence: 4 givenname: Enhai surname: Liu fullname: Liu, Enhai organization: National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, China |
| BookMark | eNqFUU1vEzEQtVCRSEt_ARxW4rzBX-uPYyiFBkWK1JRDT9bEOw6OdtfF61bi37PpVghx4TSjp3nvzcw7J2dDGpCQd4wuGaP247fd3ep2t-SUi6UQwnLRvCILzhpWs0Y0Z2TBrLA1k1S-IefjeKRUcW3Fgmx2PXRdtd0f0ZfqM5apxDRUq-6Qciw_-uoTjNhWE7TuH3J6mvr77Wb7ZKqQcnWLfSpY7XAY43B4S14H6Ea8fKkX5PuX67urm3qz_bq-Wm1qL6kttbFM76n3kqNG2YAIDVMgQCtllPJt66kCTQNwFTTzTQAMaGlrVGu9EiAuyHrWbRMc3UOOPeRfLkF0z0DKBwe5RN-ho5RKpZmRHrhUJljOWmo8p1qCDrCftD7MWtNxPx9xLO6YHvMwre-4paqxzFg1TYl5yuc0jhnDH1dG3SkCN0fgThG4lwgmlv2H5WOB039Lhtj9h_t-5kZE_MtNSK6NEr8BfEyVOw |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1007_s00607_024_01411_w crossref_primary_10_1016_j_eswa_2024_126206 crossref_primary_10_3390_rs16122177 crossref_primary_10_1155_joro_8556780 crossref_primary_10_3390_drones8110691 crossref_primary_10_1109_TIM_2024_3428639 crossref_primary_10_1109_TGRS_2024_3509725 crossref_primary_10_3390_drones9020100 crossref_primary_10_1007_s40747_025_01956_z crossref_primary_10_3390_aerospace11050392 crossref_primary_10_1038_s41598_025_00239_4 crossref_primary_10_1109_JSTARS_2024_3525148 crossref_primary_10_1117_1_JEI_33_6_063054 crossref_primary_10_3390_electronics14132607 crossref_primary_10_3390_rs16163057 crossref_primary_10_1109_JSTARS_2024_3474689 crossref_primary_10_3390_rs17010020 crossref_primary_10_1002_jemt_24775 crossref_primary_10_3390_rs16162878 crossref_primary_10_1109_JSTARS_2025_3530141 crossref_primary_10_1109_JSTARS_2025_3560200 crossref_primary_10_3390_rs16112026 crossref_primary_10_1016_j_aquaculture_2025_742722 crossref_primary_10_1088_1361_6501_add611 crossref_primary_10_1109_JSTARS_2025_3576780 crossref_primary_10_3390_rs16112024 crossref_primary_10_1016_j_measurement_2024_116624 crossref_primary_10_1016_j_procs_2025_01_058 crossref_primary_10_3390_biomimetics10070446 crossref_primary_10_1016_j_infrared_2025_105851 crossref_primary_10_1088_2632_2153_addbc2 crossref_primary_10_3390_electronics14132657 crossref_primary_10_1002_adfm_202501877 crossref_primary_10_3390_pr13030898 crossref_primary_10_3390_rs16173194 crossref_primary_10_1109_TIM_2025_3598390 crossref_primary_10_3390_agriengineering7010002 crossref_primary_10_1109_JSTARS_2025_3595197 crossref_primary_10_14358_PERS_24_00060R2 crossref_primary_10_1109_LGRS_2025_3569672 crossref_primary_10_1109_JSTARS_2025_3543951 crossref_primary_10_1109_TGRS_2025_3586239 crossref_primary_10_1177_16878132241258826 crossref_primary_10_1088_2631_8695_adc8fd crossref_primary_10_1007_s00530_024_01622_3 crossref_primary_10_1109_TGRS_2025_3526799 crossref_primary_10_1109_ACCESS_2025_3589010 crossref_primary_10_1109_JSTARS_2024_3388013 crossref_primary_10_3390_app14041557 crossref_primary_10_3390_s24154858 crossref_primary_10_3390_app15126411 crossref_primary_10_3390_s25082477 crossref_primary_10_1007_s11042_024_18866_w crossref_primary_10_1016_j_aquaculture_2025_742192 crossref_primary_10_54097_1mw0pm54 crossref_primary_10_1109_JSTARS_2025_3526982 crossref_primary_10_1016_j_aej_2025_01_032 crossref_primary_10_1007_s12239_024_00103_w crossref_primary_10_1109_TGRS_2024_3486559 crossref_primary_10_1177_09544054251359468 crossref_primary_10_1007_s40747_025_01875_z crossref_primary_10_1109_ACCESS_2024_3487492 crossref_primary_10_3390_rs16132465 crossref_primary_10_1109_JSTARS_2025_3557092 crossref_primary_10_1109_JSTARS_2025_3551551 crossref_primary_10_1038_s41598_025_89124_8 crossref_primary_10_1109_ACCESS_2025_3539924 crossref_primary_10_1007_s11042_025_20872_5 crossref_primary_10_3390_rs16224175 crossref_primary_10_1371_journal_pone_0330759 crossref_primary_10_1109_TGRS_2025_3583467 crossref_primary_10_1109_LGRS_2025_3546034 crossref_primary_10_3390_rs16234374 crossref_primary_10_1109_JSTARS_2024_3524379 crossref_primary_10_1007_s11554_025_01716_9 crossref_primary_10_1109_LGRS_2024_3398106 crossref_primary_10_1108_IJICC_08_2024_0383 crossref_primary_10_3390_rs17152672 crossref_primary_10_3390_rs17020297 crossref_primary_10_3390_rs17132204 crossref_primary_10_1109_JSTARS_2024_3452680 crossref_primary_10_3390_jmse12101774 crossref_primary_10_1016_j_cviu_2025_104489 crossref_primary_10_1007_s11227_025_07577_0 crossref_primary_10_1016_j_atech_2025_101181 crossref_primary_10_1061_JCCEE5_CPENG_6829 crossref_primary_10_3389_fnbot_2024_1430155 crossref_primary_10_1109_JSTARS_2025_3543189 crossref_primary_10_3390_electronics13112080 crossref_primary_10_1049_ipr2_70110 crossref_primary_10_1155_ijae_5533761 crossref_primary_10_1109_JSTARS_2024_3525177 crossref_primary_10_1109_LGRS_2025_3534786 crossref_primary_10_3390_rs17122099 crossref_primary_10_20965_jaciii_2025_p0941 crossref_primary_10_1016_j_compeleceng_2025_110413 crossref_primary_10_3390_land14020326 crossref_primary_10_3390_rs17142421 crossref_primary_10_3390_rs17183170 crossref_primary_10_1109_ACCESS_2024_3486311 crossref_primary_10_3390_rs17152572 crossref_primary_10_1016_j_rsase_2025_101582 crossref_primary_10_3390_drones8090495 crossref_primary_10_1016_j_engappai_2025_111820 crossref_primary_10_1007_s10586_024_04474_8 crossref_primary_10_1007_s11554_025_01623_z |
| Cites_doi | 10.1109/CVPR.2019.00075 10.1145/3505244 10.3390/rs12152501 10.1080/01431161.2020.1811422 10.1016/j.neucom.2022.07.042 10.1109/ICCV.2017.74 10.1109/TGRS.2017.2778300 10.1109/CVPR.2017.690 10.1109/CVPR.2016.91 10.1109/TIV.2023.3282567 10.1109/JSTARS.2021.3087555 10.1007/978-3-030-58555-6_16 10.1109/TCYB.2021.3095305 10.1109/TGRS.2016.2601622 10.3390/rs12223750 10.3390/rs13112171 10.1109/ICCV48922.2021.00061 10.3390/rs14040871 10.1609/aaai.v34i07.6999 10.1109/JSTARS.2020.3005403 10.1371/journal.pone.0259283 10.1109/CVPR52688.2022.00475 10.3390/rs13071311 10.1109/TGRS.2016.2645610 10.1109/TPAMI.2022.3152247 10.1109/JSTARS.2022.3206399 10.1016/j.isprsjprs.2019.11.023 10.1109/ICCV.2017.322 10.1016/j.compeleceng.2022.108490 10.1109/TGRS.2023.3258666 10.1109/TPAMI.2019.2956516 10.1109/JSTARS.2022.3140776 10.1007/978-3-319-10602-1_48 10.1109/JSTARS.2022.3148139 10.1109/LGRS.2018.2813094 10.1109/CVPR52688.2022.01058 10.1109/TPAMI.2015.2437384 10.1109/ICCV.2019.00667 10.1109/CVPR52729.2023.00995 10.1109/icip49359.2023.10222333 10.1109/CVPR52729.2023.00721 10.1109/LGRS.2019.2912582 10.1109/tpami.2016.2577031 10.1109/JSTARS.2022.3176141 10.1109/ICCV.2017.446 10.1109/ICCVW54120.2021.00312 10.1117/1.JEI.31.4.043049 10.1016/j.jag.2021.102456 10.1109/ACCESS.2023.3233964 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2023.3339235 |
| DatabaseName | IEEE Xplore (IEEE) Open Access资源_IEL Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_000467184ca2468f921d08c2074a7fab 10_1109_JSTARS_2023_3339235 10342786 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62375266 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX AETIX AGSQL CITATION EJD 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c409t-8917b0cc42e7e45a3f516a3a766866cddc06a70fa26f71c5faefe90d86d9c63a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 147 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133505400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Tue Oct 14 14:32:29 EDT 2025 Fri Jul 25 10:36:17 EDT 2025 Sat Nov 29 04:51:20 EST 2025 Tue Nov 18 20:50:30 EST 2025 Wed Aug 27 02:35:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-8917b0cc42e7e45a3f516a3a766866cddc06a70fa26f71c5faefe90d86d9c63a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3084-0126 0009-0007-5808-0161 0000-0002-2959-3968 |
| OpenAccessLink | https://doaj.org/article/000467184ca2468f921d08c2074a7fab |
| PQID | 2906591896 |
| PQPubID | 75722 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10342786 doaj_primary_oai_doaj_org_article_000467184ca2468f921d08c2074a7fab crossref_citationtrail_10_1109_JSTARS_2023_3339235 proquest_journals_2906591896 crossref_primary_10_1109_JSTARS_2023_3339235 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref15 Li (ref14) 2022 ref53 ref52 ref10 ref54 ref17 Bochkovskiy (ref12) 2020 ref16 ref19 Fan (ref39) 2023 ref18 ref51 ref50 Jocher (ref13) 2020 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Redmon (ref11) 2018 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref43 doi: 10.1109/CVPR.2019.00075 – ident: ref18 doi: 10.1145/3505244 – ident: ref29 doi: 10.3390/rs12152501 – ident: ref27 doi: 10.1080/01431161.2020.1811422 – year: 2020 ident: ref12 article-title: YOLOv4: Optimal speed and accuracy of object detection – ident: ref45 doi: 10.1016/j.neucom.2022.07.042 – ident: ref48 doi: 10.1109/ICCV.2017.74 – ident: ref24 doi: 10.1109/TGRS.2017.2778300 – ident: ref10 doi: 10.1109/CVPR.2017.690 – ident: ref9 doi: 10.1109/CVPR.2016.91 – ident: ref16 doi: 10.1109/TIV.2023.3282567 – ident: ref31 doi: 10.1109/JSTARS.2021.3087555 – year: 2023 ident: ref39 article-title: Rethinking local perception in lightweight vision transformer – ident: ref51 doi: 10.1007/978-3-030-58555-6_16 – ident: ref42 doi: 10.1109/TCYB.2021.3095305 – ident: ref22 doi: 10.1109/TGRS.2016.2601622 – ident: ref28 doi: 10.3390/rs12223750 – ident: ref30 doi: 10.3390/rs13112171 – year: 2018 ident: ref11 article-title: YOLOv3: An incremental improvement – ident: ref20 doi: 10.1109/ICCV48922.2021.00061 – ident: ref21 doi: 10.3390/rs14040871 – ident: ref44 doi: 10.1609/aaai.v34i07.6999 – ident: ref5 doi: 10.1109/JSTARS.2020.3005403 – ident: ref35 doi: 10.1371/journal.pone.0259283 – ident: ref19 doi: 10.1109/CVPR52688.2022.00475 – ident: ref26 doi: 10.3390/rs13071311 – ident: ref23 doi: 10.1109/TGRS.2016.2645610 – ident: ref17 doi: 10.1109/TPAMI.2022.3152247 – ident: ref38 doi: 10.1109/JSTARS.2022.3206399 – ident: ref4 doi: 10.1016/j.isprsjprs.2019.11.023 – ident: ref8 doi: 10.1109/ICCV.2017.322 – ident: ref33 doi: 10.1016/j.compeleceng.2022.108490 – ident: ref54 doi: 10.1109/TGRS.2023.3258666 – ident: ref49 doi: 10.1109/TPAMI.2019.2956516 – ident: ref32 doi: 10.1109/JSTARS.2022.3140776 – ident: ref47 doi: 10.1007/978-3-319-10602-1_48 – ident: ref3 doi: 10.1109/JSTARS.2022.3148139 – ident: ref25 doi: 10.1109/LGRS.2018.2813094 – ident: ref41 doi: 10.1109/CVPR52688.2022.01058 – ident: ref6 doi: 10.1109/TPAMI.2015.2437384 – ident: ref50 doi: 10.1109/ICCV.2019.00667 – ident: ref40 doi: 10.1109/CVPR52729.2023.00995 – ident: ref52 doi: 10.1109/icip49359.2023.10222333 – ident: ref15 doi: 10.1109/CVPR52729.2023.00721 – ident: ref2 doi: 10.1109/LGRS.2019.2912582 – ident: ref7 doi: 10.1109/tpami.2016.2577031 – ident: ref36 doi: 10.1109/JSTARS.2022.3176141 – year: 2022 ident: ref14 article-title: YOLOv6: A single-stage object detection framework for industrial applications – ident: ref46 doi: 10.1109/ICCV.2017.446 – ident: ref53 doi: 10.1109/ICCVW54120.2021.00312 – ident: ref34 doi: 10.1117/1.JEI.31.4.043049 – year: 2020 ident: ref13 article-title: Ultralytics/YOLOv5: Initial release publication-title: Zenodo – ident: ref1 doi: 10.1016/j.jag.2021.102456 – ident: ref37 doi: 10.1109/ACCESS.2023.3233964 |
| SSID | ssj0062793 |
| Score | 2.6523478 |
| Snippet | Due to the limitations of small targets in remote sensing images such as background noise, poor information, and so on, the results of commonly used detection... Due to the limitations of small targets in remote sensing images, such as background noise, poor information, and so on, the results of commonly used detection... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Ambient noise Attention mechanism Background noise Deep learning Detection Detection algorithms Feature extraction Feature maps Modules Object recognition Optical imaging Optical sensors Parameter modification Real-time systems Remote sensing Target detection Transformers Vision transformer YOLOv8 |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA62KPjiteLWKnnw0Vkzk0wuj1u1-rB0patQn8KZXGphOyvbaaH_3pNMtgqi4NsQEibMl-RcJuf7CHkNQQM3ra5AMahEbGMFwumKteAV-hM8QOaZnavjY316aj6XYvVcCxNCyJfPwjQ95n_5fu2uUqoMdzhPyhByh-woJcdire2xKxuVGXbRITFV4owpFEM1M29xjc9OltOkFD7lHD2CLO72ywxltv4ir_LHmZwNzdHD_5ziI_KgeJR0Ni6Bx-RO6J-Qex-zYu_NUzJfXsBqRRddSrjQ92HId696OludrTfnw_cLeoiGzFNsGhMM-PxtMV9ca4r-LD0JiGWgy3TPvT_bI1-PPnx596kqEgqVw8BtqDRGYx1zTjRBBdECj20tgYOSUkvpvHdMIkoRGhlV7doIIQbDvJbeOMmBPyO7_boPzwnVEqQTrUOPoRPKY5jGusYr6OpQc9nJCWm2X9S6wi-eZC5WNscZzNgRBptgsAWGCXlzO-jHSK_x7-6HCarbrokbOzcgBrZsNZsLYtHkCgeNkDqapvZM47yVABWhm5C9hNtv7xshm5CDLfK2bORLm9jwW1NrI_f_MuwFuY9TFGNa5oDsDpur8JLcddfD-eXmVV6jPwHyNODq priority: 102 providerName: IEEE |
| Title | Small Object Detection Algorithm Based on Improved YOLOv8 for Remote Sensing |
| URI | https://ieeexplore.ieee.org/document/10342786 https://www.proquest.com/docview/2906591896 https://doaj.org/article/000467184ca2468f921d08c2074a7fab |
| Volume | 17 |
| WOSCitedRecordID | wos001133505400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bSxwxFA5FWvClWLW43siDj45mJplcHtf7w-IWt4I-hTO5WGF3FF2F_vueZGatUGhf-jaEDJl8OXMuIfk-QvYgaOCm1gUoBoWIdSxAOF2wGrzCfIIHyDyzI3V5qW9uzLd3Ul_pTFhHD9wBd5ivN6IDFQ4qIXU0VemZdhWGPlARmuR9mTKLYqrzwbJCs-s5hkpmDtHIh1eTgyQVfsA5pgRZ3e13HMp0_b2-yh9OOUeasxXyuU8R6bD7tC_kQ2hXyafzLMH7c42MJjOYTum4STso9CTM82Gqlg6ndw9Y6f-Y0SOMTJ5iU7djgM-349H4VVNMUOlVwMUJdJIOrrd36-T67PT78UXRayIUDiuxeaGxvGqYc6IKKogaeKxLCRyUlFpK571jEmGPUMmoSldHCDEY5rX0xkkO_CtZah_asEGoliCdqBHKshHKY93FmsoraMpQctnIAakWCFnXE4Yn3YqpzYUDM7aD1SZYbQ_rgOy_vfTY8WX8vftRgv6tayK7zg1oArY3AfsvExiQ9bRw78bjSUAEJ7C9WEnb_5nPNtHb16bURm7-j7G3yDLOR3SbMttkaf70EnbIR_c6v39-2s1GuZsvFf4CmSfhSg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWggGBTXkUMLeAFSzI4sePHcgotRYQZ1ClSWVk3ttNWmmbQNK3E33PtZAoSKhK7yLIVK8f2fcT3HELeQNDATakzUAwy0ZRNBsLpjJXgFfoTPEDima3UdKqPj83XoVg91cKEENLlszCOj-lfvl-6y5gqwx3OozKEvE3ulEIUrC_XWh-8slCJYxddEpNF1piBZChn5h2u8snhfBy1wseco0-Q5N1-G6LE1z8IrPx1KidTs__wPyf5iGwOPiWd9IvgMbkV2ifk3sek2fvzKanm57BY0FkdUy70Q-jS7auWThYny9VZd3pOd9GUeYpNfYoBn7_PqtmVpujR0sOAaAY6jzfd25Mt8m1_7-j9QTaIKGQOQ7cu0xiP1cw5UQQVRAm8KXMJHJSUWkrnvWMScWqgkI3KXdlAaIJhXktvnOTAn5GNdtmG54RqCdKJ0qHPUAvlMVBjdeEV1HnIuazliBTrL2rdwDAehS4WNkUazNgeBhthsAMMI_L2etCPnmDj3913I1TXXSM7dmpADOyw2WwqiUWjKxwUQurGFLlnGuetBKgG6hHZirj98b4eshHZWSNvh618YSMffmlybeSLG4a9JvcPjr5Utvo0_bxNHuB0RZ-k2SEb3eoyvCR33VV3drF6ldbrL86Q5DE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Object+Detection+Algorithm+Based+on+Improved+YOLOv8+for+Remote+Sensing&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Hao+Yi&rft.au=Bo+Liu&rft.au=Bin+Zhao&rft.au=Enhai+Liu&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2151-1535&rft.volume=17&rft.spage=1734&rft.epage=1747&rft_id=info:doi/10.1109%2FJSTARS.2023.3339235&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_000467184ca2468f921d08c2074a7fab |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |